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h i g h l i g h t s

! An ensemble model is developed to
produce both deterministic and
probabilistic wind forecasts.

! A deep feature selection framework is
developed to optimally determine the
inputs to the forecasting
methodology.

! The developed ensemble
methodology has improved the
forecasting accuracy by up to 30%.
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a b s t r a c t

With the growing wind penetration into the power systemworldwide, improving wind power forecasting
accuracy is becoming increasingly important to ensure continued economic and reliable power system
operations. In this paper, a data-driven multi-model wind forecasting methodology is developed with a
two-layer ensemble machine learning technique. The first layer is composed of multiple machine learning
models that generate individual forecasts. A deep feature selection framework is developed to determine
the most suitable inputs to the first layer machine learning models. Then, a blending algorithm is applied
in the second layer to create an ensemble of the forecasts produced by first layer models and generate both
deterministic and probabilistic forecasts. This two-layer model seeks to utilize the statistically different
characteristics of eachmachine learning algorithm. A number of machine learning algorithms are selected
and compared in both layers. This developed multi-model wind forecasting methodology is compared to
several benchmarks. The effectiveness of the proposed methodology is evaluated to provide 1-hour-ahead
wind speed forecasting at seven locations of the Surface Radiation network. Numerical results show that
comparing to the single-algorithm models, the developed multi-model framework with deep feature
selection procedure has improved the forecasting accuracy by up to 30%.
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1. Introduction

Renewable energy resources, particularly wind and solar
energy, have become a primary focus in government policies, aca-
demic research, and the power industry. Among various renew-
ables, wind energy is considered as one of the most promising
alternatives [1]. However, the variable and uncertain nature of
the wind resource may affect the economic and reliable operations
of the power system [2], especially with the increasing penetration
levels of wind power [3]. Therefore, it is important and desired to
improve the accuracy of the wind speed forecasting (WSF) or wind
power forecasting (WPF) that is used in power system scheduling.
Different forecasting models have been developed in the literature,
and they can be generally classified into three groups [4]: (i) phys-
ical models that are usually based on numerical weather prediction
(NWP) models; (ii) statistical methods, most of which are intelli-
gent algorithms based on data-driven approaches; and (iii) hybrid
physical and statistical models.

NWP models simulate the physics of the atmosphere utilizing
physical laws and boundary conditions. There exist a variety of
challenges by directly adopting NWP models for wind forecasting,
such as the accuracy, spatial and temporal resolutions, domain and
hierarchical importance of the physical processes. Based on the
domain coverage, the NWP models could be divided into limited
area models (LAMs) and global models (GMs) [5]. Several GMs
[6–8] have been developed to fulfill different forecasting needs,
such as the Global Forecast System (GFS) and the Integrated Fore-
cast Model (IFS). LAMs normally produce higher-resolution fore-
casts than GMs. Different LAMs have been developed for
forecasting at different domains, some of which include the
High-Resolution Limited Area Model (HIRLAM) [9], ALADIN [10],
the Fifth-Generation Mesoscale Model (MM5) [11], and High Reso-
lution Rapid Refresh (HRRR) [12].

Statistical models are trained using historical data and usually
outperform NWP models in very short-term forecasting (within
one-hour ahead) [13]. Both linear and non-linear methods have
been widely applied to wind forecasting. Linear models, such as
autoregressive moving average (ARMA) methods [14,15], Box-
Jenkins methods [16], Kalman filter [17], and Markov Chain models
[18,19], are most widely used in the literature. Artificial neural net-
works (ANN) and support vector machine (SVM) are the two most
popular nonlinear methods for wind forecasting. Ghorbani et al.
[20] forecasted one-hour ahead wind speed with ANN model com-
bined with genetic expression programming. It was found that this
model could significantly improve the forecast accuracy compared
to the selected benchmark models. Chitsaz [21] adopted multi-
dimensional wavelets as the activation functions in the ANN mod-
els to improve the forecasting accuracy. Li and Shi [22] comprehen-
sively compared different ANN models in wind speed forecasting
and concluded that the ANN models performed inconsistency with
different conditions. Zhou et al. [23] developed three SVMmethods
with three kernels, and found that the SVM model performed bet-
ter than the persistence approach for the test cases. Decision trees
of many forms have also been used extensively as nonlinear meth-
ods for wind power forecasting. Troncoso et al. [24] proposed sev-
eral regression tree models that could achieve competitive results
with less computational time compared to other benchmark mod-
els. More research about wind forecasting with ANN and SVM algo-
rithms has been done in [25–28].

Considering the spatial and temporal complexity of wind fore-
casting, it is challenging to develop a single algorithm that per-
forms the best for all forecasting scenarios. An alternative way to
reduce the risk of bad forecasts and improve the overall accuracy
is hybriding multiple characteristically different algorithms, which
is also known as ‘ensemble forecasting’. Hybrid methods have been
shown in the literature to produce more accurate forecasts than

any of the individual forecasting models [29]. These hybrid or
ensemble models can be divided into four categories: (i) data
pre-processing based ensemble approaches; (ii) model-optimized
ensemble approaches; (iii) data post-processing based ensemble
approaches; and (iv) weighting-based ensemble approaches [30].
More information about the hybrid models could be found in
[31–33]. For most studies, only two or three algorithms are
blended with linear or non-linear weighting strategies. In addition,
most models are tested with no more than two datasets, which is
generally not enough to convincingly conclude that hybrid models
are better than individual models, given the large differences in
forecasting accuracy exhibited by the same algorithms at different
sites. In this paper, a novel two-layer multi-model forecasting
methodology is developed, which utilizes multiple characteristi-
cally different machine learning algorithms with different kernels
in both layers. The developed methodology is validated with the
data collected from seven Surface Radiation (SURFRAD) network
locations to provide 1-h-ahead wind forecasting.

One of the major components of the developed multi-model
forecasting model is a deep feature selection framework, which
can select the most suitable inputs to the forecasting model. Full-
dimension features will not only increase the computation time
but also decrease the forecasting accuracy. A well-designed feature
selection process plays a key role in wind forecasting. Different fea-
ture selection methods have been used in the literature. Liu et al.
[34] utilized the autocorrelation function (ACF) and partial auto-
correlation function (PACF) analysis, along with the Granger
causality test to quantitatively analyze the relation between wind
speeds and other variables on different lags. Kou et al. [35] used the
sequential forward greedy search approach to determine the
length of historical wind speed data as the inputs. Li et al. [36]
developed a conditional mutual information-based feature selec-
tion approach to determine a small set of wind power and wind
speed as input features. However, most of the existing feature
selection methods present two major issues: (i) linear methods,
such as ACF and PACF analysis, only consider the linear relations
between time series; and (ii) nonlinear methods always take a con-
tinuous feature subset as a factor but do not analyze the individual
lags.

To bridge the gap discussed above in wind forecasting, this
paper develops a data-driven multi-model methodology with a
deep feature selection process for short-term wind forecasting.
The main contributions of this paper are as follows:

(1) An ensemble model for WSF is developed to automatically
blend multiple single-algorithm models with different ker-
nels being able to generate both deterministic and proba-
bilistic forecasts.

(2) A deep feature selection framework is developed to opti-
mally determine the input vector to the forecasting
methodology.

The remainder of the paper is organized as follows. Section 2
describes the developed deep feature selection procedure and the
individual algorithms employed in the two-layer hybrid model.
Section 3 presents the results of deep feature selection, determin-
istic and probabilistic wind forecasts at multiple studied locations.
Section 4 gives the conclusions and future work.

2. Multi-model wind forecasting with deep feature selection

Due to the nonlinear and non-stationary characteristics of wind
speed, it is challenging to develop a generic model based on a sin-
gle machine learning algorithm that can produce the best forecasts
at different spatial and temporal scales. In this paper, a data-driven
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multi-model wind forecasting methodology with deep feature
selection is developed. The developed methodology is illustrated
in Fig. 1, with a two-layer forecasting structure. First, features
extracted from the data variables are determined by a deep feature
selection procedure and serve as inputs to the model. Four inde-
pendent feature selection methods are included in the procedure
and implemented sequentially. The first layer machine learning
models are built based on the selected feature combination. These
models forecast wind speed or wind power as the output. A blend-
ing model is developed in the second layer to combine the fore-
casts produced by different algorithms from the first layer, and
to generate both deterministic and probabilistic forecasts. Parame-
ters of these models are optimally tuned by the grid search tech-
nique. Machine learning algorithms have distinctive advantages.
For instance, ANN algorithms are adaptive by choosing different
learning functions and loss functions, but have overfitting issues
when the training data set is not long enough. SVM is efficient to
train and can provide relatively accurate results, but they are
memory-intensive and hard to tune. Tree ensemble algorithms like
random forest and gradient boosting machine can avoid overfitting
issues. The developed blending model is expected to integrate the
advantages of different algorithms by canceling or smoothing the
local forecasting errors.

2.1. Deep feature selection

The performance of a data-driven model highly depends on its
inputs. There are several variables in one data set, such as wind
speed, humidity, etc. Each variable has several lags, which are dif-
ferent features that need to be selected. The selected features will
serve as inputs to the machine learning models. A comprehensive
feature selection as illustrated in Fig. 2 is developed with the aim of

improving the forecasting accuracy by selecting optimal feature
combinations. Four different approaches are employed to select
the most suitable input variables, which are: (i) principal compo-
nent analysis (PCA); (ii) Granger causality test (GCT); (iii) autocor-
relation analysis (ACF) and partial autocorrelation analysis (PACF);
and (iv) recursive feature elimination (RFE).

2.1.1. Principal component analysis (PCA)
The data used for WPF or WSF usually contains a large number

of variables, which may lead to high computational cost and may
also decrease the prediction accuracy due to the extraneous infor-
mation. To reduce the risk of over-fitting and inaccurate forecasts,
PCA is applied to determine the major factors that contribute to the
prediction [37]. The substance of PCA is the linear transformation.
By using PCA, the observation matrix, X, is transformed into covari-
ance matrix

P
. The contribution rate (CR) and the cumulative con-

tribution (CC) of the ith principal component are, respectively,
computed by:

CRi ¼
kiPp
j¼1kj

ð1Þ

CCi ¼
Pi

j¼1kiPp
j¼1kj

ð2Þ

where ki is the eigenvalue corresponding to the ith principal compo-
nent, and p is the number of parameters.

2.1.2. Granger causality test (GCT)
PCA can reduce the variable dimension, but not all of the

remaining variables are useful for the forecasting. To further
explore correlations between the remaining variables and the wind
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Fig. 1. The overall framework of the ensemble forecasting model.
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speed series, GCT is conducted. GCT is a statistical hypothesis test
first proposed by Clive W.J. Granger [38]. GCT has been widely
applied in econometrics, and recently also in WPF or WSF. The effi-
ciency of GCT in WPF or WSF feature selection has been proved in
the literature [34,39,40].

The overall process of GCT is described in the green dash rect-
angular of Fig. 2. The prerequisite to conduct GCT is to ensure
the testing time series be stationary [41]. To this end, the Aug-
mented Dickey-Fuller unit root test (ADF) [42] is chosen as the sta-
tionary test approach in this paper. The null hypothesis of the ADF
test is ‘the testing time series does not have unit root’, which
means the series is non-stationary. If the test statistic is smaller
than the critical value, the proposed null hypothesis is rejected,
which means the series is stationary and thus GCT can not be
implemented directly. To further ensure the long-term relationship
between two variables, the Johansen cointegration test (JCT) is also
applied.

If the testing series is stationary or is validated to have stable
relationship, GCT can be carried out. The unrestricted model and
restricted model for the testing are, respectively, described as [38]:

xu1ðtÞ ¼
Xl

j¼1

ajx1ðt % jÞ þ
Xp

j¼1

bjx2ðt % jÞ þ eðtÞ ð3Þ

xr1ðtÞ ¼
Xl

j¼1

ajx1ðt % jÞ þ eðtÞ ð4Þ

where fx1g and fx2g are testing variables, eðtÞ is the residual for the
model, l and p are lags of series fx1g and fx2g, respectively. The dif-
ference between the unrestricted model xu1ðtÞ and restricted model
xr1 is that: xu1ðtÞ contains the causal series fx2g, while xr1ðtÞ does not
contain the causal series fx2g.

To determine whether fx2g Granger causes fx1g or not, the
F-test is conducted as:

F ¼ SSRr % SSRu

SSRu

n% l% q
q

! "
ð5Þ

where SSRr is the sum of squared residuals of the restricted model,
SSRu is the sum of squared residuals of the unrestricted model, n is
the sample size, q is the number of variables in Eq. (3), and (lþ q) is
the number of variables in Eq. (4). The F-statistic is then compared
to the critical value and the decision can be made based on the
probability.

2.1.3. Autocorrelation and partial autocorrelation analysis
Both PCA and GCT methods identify the most important vari-

ables for the machine learning models, but don’t consider different
lags of each variable. In time series analysis, the autocorrelation
function (ACF) and partial autocorrelation function (PACF) are
two popular approaches to measure how a variable series is corre-
lated with itself at different lags. Using ACF and PACF analysis, the
most meaningful lags can be identified for forecasting. ACF indi-
cates the correlation of the variables between two lags qh, which
is defined as:

qh ¼ Corr x1t ; x1ðt%hÞ
# $

¼ ch
c0

ð6Þ

where x1t is the wind speed at time t, x1ðt%hÞ is the wind speed at
time ðt % hÞ; rh is the covariance of wind speed lag h, and c0 is the
covariance of current wind speed.

PACF denotes the correlation between variables at lag h and lag
ðt % hÞ by removing all the dependence on other variables between
the two lags, which is defined as:

/h ¼ Corr xt % P xtjxt%hþ1; . . . ; xt%1ð Þ½ (; xt%h % P xtjxt%hþ1; . . . ; xt%1ð Þ½ (f g
ð7Þ

where P AjBð Þ is the correlation between A and B.
Then the confidence intervals are used to judge the significance

of the autocorrelations between lags. One of the most widely used
definition of the 95% confidence interval is defined by:

r:95 ¼ ) 2ffiffiffiffi
N

p ð8Þ

where N is the data size. In this paper, both ACF and PACF are
employed to determine the optimal wind speed lags for the
machine learning inputs.

2.1.4. Recursive Feature Elimination (RFE)
From the previous feature selection procedure, redundant vari-

ables are filtered out and the remaining variables are
fX1;X2; . . . ;Xmg. Additionally, the wind speed series has been ana-
lyzed and its most useful lags have been determined. However,
each wind speed lag is evaluated separately, which may not guar-
antee the effectiveness of their combination with other variables’
lags (e.g., temperature, pressure, etc.). Therefore, the RFE method
is adopted to find the optimal combination of different lags of
the filtered variables.

RFE is a type of wrapper method. It first trains the model with
the original feature set fxi;1; xi;2; . . . ; xi;pg i ¼ 1;2 . . . ;mð Þ and ranks
the features based on their importance. Then the model perfor-
mance is evaluated based on different metrics. This procedure is
repeated with a progressively smaller subset, which is reduced
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Fig. 2. The framework of the deep feature selection procedure.
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by d features. The model with the best performance is picked out
and the feature combination is determined. The algorithm is illus-
trated by a pseudo-code with the random forest algorithm in Fig. 3.
The root mean square error (RMSE) metric is used to evaluate the
model performance. Then the random forest algorithm is used to
train the model. The RFE results are then compared and combined
with the previous results.

2.2. Blending models and machine learning algorithms

With the suitable inputs selected by the deep feature selection
procedure, the single-algorithm machine learning models can be
expressed as follows,

yi ¼ f iðx1; x2; . . . ; xpÞ ð9Þ

where f ið*Þ is the ith algorithm and yi is the wind speed forecasted
by f ið*Þ. The final forecasted wind speed by the blending algorithm,
ŷ, is represented by:

ŷ ¼ Uðy1; y2; . . . ; ymÞ ð10Þ

To obtain accurate forecasts, multiple machine learning models
from the first layer are included in the ensembles. In the second
layer, several blending algorithms are also tested for generalizabil-
ity. The algorithms employed in both two layers include artificial
neural networks (ANN), support vector regression (SVR), gradient
boosting machine (GBM), and random forest (RF) regression. The
forecasting accuracy and computational cost are the two major cri-
teria for selecting the different algorithms. All of these component
algorithms used to develop the framework are selected from the
state-of-the-art machine learning algorithms. These algorithms
have been shown to perform well at different forecasting horizons
in the literature [43–46]. The selected models have shown a similar
level of performance and acceptable computational cost in the lit-
erature. Other algorithms like linear regression and time series
models may add noise to the framework, and more advanced mod-
els like deep learning algorithm models require more computa-
tional power. Thus, they are not considered in the developed
framework. The four selected component machine learning algo-
rithms are briefly introduced in the following paragraphs.

ANN is a widely used algorithm that consists of interconnected
neurons. ANN can be classified into different types with different
activation functions and learning algorithms. The mathematical
description of the ANN is expressed as:

yðnÞi ¼ f ð
XN

j¼1

wðn;n%1Þ
ij yðn%1Þ

j þ hni Þ ð11Þ

where i is a neuron of the nth layer, wij is the weight from the neu-
ron j in the layer ðn% 1Þ to the neuron i in layer n, and hni is the
threshold of the neuron i in the n-th layer.

SVM is a linear classifier proposed by Vapnik [47]. When deal-
ing with linearly inseparable data, nonlinear mapping based kernel

methods, jðxÞ : Rn ! Rnh , are used to map the nonlinear data into
the high dimensional feature space. Then, a linear hyper plane is
found by maximizing the distance between support vectors and
the hyper plane. The SVM algorithm can also be applied in regres-
sion problems, which is called support vector regression (SVR). The
hyper plane function, also called the SVR function, is described as:

f ðxÞ ¼ xTjðxÞ þ b ð12Þ

where x and b are variables solved by minimizing the empirical
risk, which is given by:

Rðf Þ ¼ 1
n

Xn

i¼1

Heðyi; f ðxÞÞ ð13Þ

where Heðy; f Þ is the e-insensitive loss function, expressed as:

Heðy; f Þ ¼
kf % yk% e; if kf % yk P e
0; otherwise

&
ð14Þ

Then the optimal hyper plane is found by solving the inequality-
constrained quadratic optimization problem.

GBM is a type of ensemble learning method that implements
the sequential boosting algorithm. Basically, the objective of GBM
is to minimize the expectation of the loss function [33]. To achieve
this, the residual of the initial model is calculated. Then the base
learner is fitted to the residual by the gradient descent algorithm.
Thus, the model is updated by adding the weighted base learner
to the previous model. Finally, the target model is obtained by iter-
atively conducting the previous steps. The GBM algorithm is illus-
trated by the pseudo-code [48] in Fig. 4.

Random forest (RF) regression is another ensemble learning
method that consists of many single classification and regression
trees (CART). To train these single CART, the bagging algorithm is
used to create different bootstrap samples from the input data.
During this process, one third of the data are not contained in
the bootstrap sample, which are called out-of-bag (OOB) data.
These OBB data are used to test the CART tree. With all the single
CART grown, the final prediction is made from aggregating the
CART. Since RF is a combination of various different regressions,
the model is generally free from over-fitting [49].

3. Case studies

3.1. Data source and pre-analysis

The developed multi-model wind forecasting methodology is
applied to the data collected from the Surface Radiation Network
(SURFRAD), which includes seven stations with diverse climates.
Both deterministic and probabilistic wind forecasts are generated
at the 1-h-ahead timescale. The information of the locations is
briefly summarized in Table 1. The SURFRAD data contain more
than twenty meteorological parameters, five of which are used in
the research, including temperature, humidity, wind speed, wind

Fig. 3. RFE algorithm.
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direction, and pressure. These meteorological variables have been
used as the inputs to short-termwind forecasting models in the lit-
erature, such as [50,51]. Even though the wind speeds were
recorded at the height of 10 meters rather than the hub height
(more than 50 meters) of large wind turbines, the forecasting
results can be used in a number of aspects, including but not lim-
ited to:

! Be directly used by small-scale or distributed wind turbines;
! Be scaled up and utilized by large-scale wind turbines;
! Provide weather forecasting results;
! Serve as inputs of solar panel power generation model for solar
forecasting.

The data at each location are recorded every minute. The data
period used in the research is from 2015-01-01 to 2015-12-31.
The data summary and the pre-processing results are also listed
in Table 1. A quality filter is applied to perform data pre-
processing, which serves two main roles: (i) noisy data pre-
processing by correcting abnormal data, and (ii) data trimming
by averaging the minute data into hourly data. The scatter plots
of the data smoothed by the quality filter are shown as a matrix
in Fig. 5. Most of the data points are concentrated at a certain area,
which are shown as green ellipses. The non-linear relationships
between each pair of variables are also depicted in Fig. 5.

The first 1/3 of data are assigned as the training data for the
first-layer models. Then, the first layer models forecast the 1-h-
ahead wind speed with the second 1/3 of the data. Forecasts from
the first-layer models together with the actual wind speed are used
to train the second-layer model. The effectiveness of the developed
multi-model framework is validated by the last 1/3 of data.

3.2. Deep feature selection case study

The deep feature selection procedure is applied to the data of
seven locations. The results at the BND station are discussed in
detail.

3.2.1. PCA feature selection
The five variables in the dataset are first processed with the PCA

to determine the minimum necessary number of variables. The
contribution rates of the principal components are listed in Table 2.
It is seen from the table that the wind direction only contributes
5.7% in the data. The major information is retained even though
the wind direction is left out. Thus the first four variables, wind
speed, temperature, humidity, and pressure, are selected as inputs
to the machine learning models.

3.2.2. GCT feature selection
With the remaining four variables, GCT is applied to determine

the causality between each variable and the wind speed. Before
implementing the GCT, the stationarity of each variable is checked
by the ADF unit root test. If the variable series is not stationary,
GCT cannot be applied directly. For the non-stationary variables,
JCT is conducted to ensure the long-term relationship between
the two variables. If there is a long-term relationship between
the test variable and the wind speed, GCT can be carried out. If
the test variable is non-stationary and doesn’t have a long-term
relationship with the wind speed, GCT cannot be applied. The test
results are summarized in Table 3. It is observed that all of the test
statistics exceed the pre-determined critical value for 99% confi-
dence level. Hence, we are not able to reject the null hypotheses,
indicating that these four variable series are non-stationary. Thus,
GCT can not be implemented directly to the dataset.

To further confirm the applicability of the GCT, JCT is applied to
test the long-term relationships between non-stationary series.
The null hypothesis of R ¼ 0 and R + 1 is ‘there is no cointegration
equation or there is at most one cointegration equation between
the testing variable and the wind speed’. On the contrary to ADF
test, if the test statistic is larger than the critical value, the null
hypothesis is rejected and vice versa. As shown in Table 4, the test
statistics of ‘‘R ¼ 0 hypothesis” exceed the critical value for all of
the three testing groups. It means there is at least one cointegra-
tion relationship between the each testing variable and the wind
speed. And for the hypothesis of R + 1, all the test statistics are less
than the critical value. It is implied that each testing variable has at
most one cointegration relationship with the wind speed. Both the
trace test and the maximum eigenvalue test indicate consistent
results. Thus, there exist long-term relationships between wind
speed and three other variables. Hence, the GCT test can be
conducted.

Based on Eqs. (3)–(5), the GCT results are calculated. For each
test variable, it is used as the input and the output of the forecast-
ing models separately. If the variable is found to Granger-cause
wind speed, this variable is valuable for wind speed prediction. If
the wind speed is the Granger-cause of the test variable, it means
the test variable is not useful to predict the wind speed. Table 5
illustrates the probability to reject the null hypothesis of GCT.
The assumptions that ‘Temperature does not Granger-cause wind
speed’ and ‘Humidity does not Granger-cause wind speed’ are
rejected under 0.005 confident level. The causality between the

Fig. 4. Gradient boosting machine algorithm.

Table 1
SURFRAD stations summary.

Locations State Lat. Long. Elev. (m) Sample no. Bad data percentage (%) Wind Speed

Mean (m/s) SD (m/s)

BND IL 40.05 %88.37 230 524,754 0.24 4.86 2.78
TBL CO 40.12 %105.24 1689 525,092 1.81 3.09 2.17
DRA NV 36.62 %116.02 1007 525,510 1.11 3.70 2.52
FPK MT 48.31 %105.24 98 525,020 0.39 4.28 2.88
GCM MS 34.25 %89.87 98 523,898 2.22 1.92 1.32
PSU PA 40.72 %77.93 375 524,927 1.82 2.89 2.15
SXF SD 43.73 %96.62 473 525,402 0.22 4.16 2.16

Note: More information about the SURFRAD locations can be found at the SURFRAD website (http://www.esrl.noaa.gov/gmd/grad/surfrad/).
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Fig. 5. Variable scatter plot matrix of BND data. Note that five variables are contained in the scatter plot: wind speed (m/s), temperature (deg. C), humidity (%), pressure
(100 Pa), and wind direction (deg).

Table 2
Contribution rates of principal components.

Contribution rate (%) Cumulative contribution (%)

Wind speed Temperature Humidity Pressure Wind direction

29.1 29.1
29.1 24.9 54.0
29.1 24.9 22.7 76.7
29.1 24.9 22.7 17.6 94.3
29.1 24.9 22.7 17.6 5.7 100

Note: The contribution rate and cumulative contribution are calculated based on Eqs. (1) and (2), respectively. The number in boldface is the cumulative contribution of the
retaining variables.

Table 3
ADF unit root test on BND data.

Test variables

Wind speed Temperature Humidity Pressure

Test statistic 0.2944 %0.5779 %0.2417 %0.1326
Critical value %3.43 %3.43 %3.43 %3.43
Conclusion N N N N

Note: The critical value used in the research is for 99% confidence level. Y means stationary and N means non-stationary.

Table 4
Johansen cointegration test on BND data.

No. of CE(s) Test statistic

Temperature Humidity Pressure

Trace Maximum eigenvalue Trace Maximum eigenvalue Trace Maximum eigenvalue

R ¼ 0 22.53 (19.96) 16.74 (15.67) 20.66 (19.96) 16.79 (15.67) 27.85 (19.96) 20.70 (15.67)
R + 1 5.79 (9.24) 5.79 (9.24) 7.08 (9.24) 8.24 (9.24) 7.15 (9.24) 7.15 (9.24)

Note: The critical values of 95% confidence level are shown in parentheses. CE means cointegration equation.
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pressure and the wind speed is not significant. Thus, historical
wind speed, temperature, and humidity are chosen as the useful
inputs to the wind speed prediction.

3.2.3. ACF and PACF feature selection
In WSF, the most important features are wind speeds of previ-

ous hours. ACF and PACF analyses are employed to determine the
dependence of wind speed lags. The correlograms and partial cor-
relograms are plotted in Fig. 6. It is shown that the wind speed ser-
ies has significant autocorrelation between lag 0 (itself), lag 1, and
lag 2. After removing the internal relations between each two lags,
the partial correlation is obtained, which is illustrated by partial
correlograms in Fig. 6. The partial correlation is significant between
lag 0 and lag 1. Even though the partial correlation coefficient does
not exceed the 95% confident interval (the blue dash lines), lag 2 is
still considered as an important feature for the forecasting models.
This is because its value is not negligible compared to other lags,
which is consistent with the results from ACF analysis.

3.2.4. RFE feature selection
The relationship between the lags of other two variables (tem-

perature and humidity) and the objective wind speed also needs to
be explored. Therefore, to ensure the performance of the selected
feature combination, RFE is used as the last step in the deep feature
selection procedure. Different numbers of features are applied as
inputs to the RF models and the performance is evaluated in terms
of RMSE. Fig. 7 shows the results of model evaluations with differ-
ent input combinations. The models with too few inputs show an
unsatisfactory accuracy, while the models with too many inputs
are computationally prohibitive. The best model has an RMSE of
0.897 with 30 features as inputs, as highlighted by the triangle in
Fig. 7. Compared to the model only using the current wind speed
as the input, the accuracy is improved by up to 12.4%. However,

30-feature inputs are too computationally expensive for training
the model. The forecasting model with 15-feature inputs also gen-
erates competitively accurate results however with much less
computation time (235.2 h for one location, using a workstation
with 1.6 GHz processor and 36 GB RAM), shown by the rectangle
in Fig. 7. Thus, the 15 features subset is finally chosen as the inputs
to wind speed forecasting at BND. The selected features and their
importance ranks are shown in Fig. 8. The first five features
WS1; WS2; WS3; WS4, and WS5 are much more important than
the other ten features as inputs to the forecasting model. However,
if only the first five features are employed as forecasting inputs, the

Table 5
Granger causality test results.

Test variables Hypotheses Prob.

Temperature Temperature does not Granger-cause wind speed 0.0002
Wind speed does not Granger-cause temperature 0.1067

Humidity Humidity does not Granger-cause wind speed 0.0007
Wind speed does not Granger-cause humidity 0.0346

Pressure Pressure does not Granger-cause wind speed 0.7567
Wind speed does not Granger-cause pressure 0.0277
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Fig. 6. Correlogram and partial correlogram of wind speed lags at BND.
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performance of the forecasting model is much worse than that
with all fifteen features combined, as illustrated in Fig. 7.

3.3. Model selection and parameter tuning

The developed multi-model framework includes multiple indi-
vidual models in the first layer and also several models in the sec-
ond layer. Different algorithms are tested in both layers. The
parameters are optimized to improve the forecasting performance
of these single-algorithm models. In this paper, the grid search

Table 6
Results of parameter tuning at the BND site.

Model Search range Selected value

SVR_li C 2 1 : 100½ ( C ¼ 1
SVR_poly C 2 1 : 100½ (; degree 2 1 : 5½ ( C ¼ 3; degree ¼ 3

ANN nl 2 1 : 5½ (;no 2 1 : 50½ (;
decay 2 0:01 : 1½ (

nl ¼ 1;no ¼ 36;
decay ¼ 0:04

GBM n:trees 2 50 : 1500½ (; k 2 0:1 1:4½ (;
int:depth 2 1 : 10½ (;n:ob 2 5 1:10½ (

n:trees ¼ 650; k ¼ 0:01;
int:depth ¼ 9;n:ob ¼ 5

RF mtry 2 1 : 100½ ( mtry ¼ 7

Table 7
1-h-ahead forecasting NMAE of single-algorithm models without feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 4.05 4.27 5.25 4.28 4.13 5.78 3.91
SVR_li 5.26 5.04 6.65 5.18 5.42 7.13 4.93
SVR_poly 5.04 4.90 6.17 4.93 5.06 6.86 4.86
ANN 5.35 5.96 6.23 5.29 5.65 6.90 4.73
GBM_g 4.95 4.82 6.02 4.80 4.82 6.68 4.78
GBM_l 5.01 4.80 6.23 4.94 4.96 6.67 4.93
RF 5.32 4.93 6.51 5.31 5.58 7.51 5.25

Note: The best NMAE values of the component models are in boldface. P represents the persistence model.

Table 8
1-h-ahead forecasting NRMSE of single-algorithm models without feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 5.65 6.60 7.36 5.91 5.68 8.27 5.42
SVR_li 7.76 8.37 9.88 7.92 8.09 9.90 6.95
SVR_poly 7.05 7.62 8.58 6.81 6.72 9.33 6.51
ANN 7.27 8.09 8.47 6.94 7.05 9.37 6.30
GBM_g 6.78 7.77 8.06 6.59 7.01 9.24 6.37
GBM_l 6.79 7.71 8.86 6.68 6.67 9.42 6.52
RF 7.36 7.21 9.10 7.35 7.46 10.04 7.11

Note: The best NRMSE values of the component models are in boldface. P represents the persistence model.

Table 9
NMAE of the developed multi-model forecasting without feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 4.05 4.27 5.25 4.28 4.13 5.78 3.91
E_SVM_li 4.32 5.28 5.44 4.45 6.04 6.03 4.05
E_SVM_poly 4.20 4.54 5.36 4.31 5.14 5.84 4.01
E_GBM 4.26 4.58 5.49 4.37 5.81 6.11 4.19
E_RF 4.26 4.60 5.66 4.33 5.34 6.09 4.22

Note: The smallest NMAE at each location is in boldface. The best ensemble model is in italic.

Table 10
NRMSE of the developed multi-model forecasting without feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 5.65 6.60 7.36 5.91 5.68 8.27 5.42
E_SVM_li 6.20 8.96 7.51 6.29 9.21 8.52 5.61
E_SVM_poly 5.77 7.22 7.36 6.05 7.08 8.16 5.49
E_GBM 5.95 7.29 7.58 6.00 8.23 8.48 5.72
E_RF 5.85 7.52 7.63 5.92 7.53 8.46 5.74

Note: The smallest NRMSE at each location is in boldface. The best ensemble model is in italic.

Table 11
NMAE of the developed multi-model forecasting with deep feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 4.05 4.27 5.25 4.28 4.13 5.78 3.91
E_SVM_li 4.05 4.61 5.20 4.19 4.76 5.72 3.84
E_SVM_poly 3.93 4.12 5.21 4.08 4.13 5.70 3.76
E_GBM 4.13 4.40 5.18 4.20 4.54 5.77 3.82
E_RF 4.21 4.51 5.30 4.22 4.54 5.86 3.87

Note: The smallest NMAE at each location is in boldface. Other NMAEs smaller than persistence model are in italic.
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Table 12
NRMSE of the developed multi-model forecasting with deep feature selection.

Models BND TBL DRA FPK GCM PSU SXF

P 5.65 6.60 7.36 5.91 5.68 8.27 5.42
E_SVM_li 5.69 8.12 7.36 5.82 7.91 8.10 5.35
E_SVM_poly 5.43 6.17 7.24 5.64 5.67 8.09 5.21
E_GBM 5.83 6.93 7.24 5.81 6.65 8.11 5.31
E_RF 5.85 7.02 7.30 5.77 6.47 8.20 5.34

Note: The smallest NRMSE at each location is in boldface. Other NRMSEs smaller than persistence model are in italic.

Fig. 9. Deterministic forecasting from the multi-model framework with confidence intervals
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method is used to determine the optimal parameters that generate
the minimum forecasting error.

For SVR, the linear (SVR_li) and polynomial (SVR_poly) models
are selected in the first layer. The sole parameter of SVR_li to tune
is the cost (C). For SVR_poly, there are two parameters to be deter-
mined: polynomial degree (degree) and cost (C).

For ANN, different learning algorithms and activation functions
are tested. The selected models employ the feed-forward back
propagation as the learning function, and the sigmoid function as
the activation function. The most important parameters for ANN
models are the hidden layer number (nl), neurons in each layer
(no), and weight decay parameter (decay).

For the GBM models, different loss functions are utilized. Two
GBM models are selected in the first layer using Gaussian (GBM_g)
and Laplacian (GBM_l) loss functions. Four parameters, i.e., the
number of trees to fit (n:trees), the learning rate (k), the maximum
depth of variable interactions (int:depth), and the minimum num-
ber of observations in the terminal nodes (n:ob) need to be tuned.

The RF model in this paper only has one parameter to be opti-
mized. It is the number of variables randomly sampled as candi-
dates at each split (mtry). One example of parameters
optimization results is listed in Table 6.

3.4. Deterministic results of the multi-model forecasting

In order to evaluate the forecasting accuracy of the developed
framework, two error criteria are utilized: the normalized mean
absolute error (NMAE) and the normalized root mean square error
(NRMSE). They are defined by:

NMAE ¼ 1
n

Xn

i¼1

f i % yi
ymax

''''

'''' ð15Þ

NRMSE ¼ 1
ymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 f i % yið Þ2

n

s

ð16Þ

where f i is the forecasted wind speed, yi is the actual wind speed,
ymax is the maximum actual wind speed, and n is the sample size.

Tables 7–12 summarize the results of different models based on
these two evaluation metrics. Tables 7 and 8, respectively, list the
NMAE and NRMSE of component single-algorithm models that are
trained without the feature selection procedure. Tables 9 and 10
show the evaluation results of the developed two-layer multi-
model framework without the feature selection procedure. Tables

11 and 12 illustrate the results of the developed framework with
the feature selection procedure.

As shown in Tables 7 and 8, none of the single-algorithm mod-
els performs better than the persistence method. Without consid-
ering the persistence model, no single-algorithm model is always
most accurate at all seven locations. For example, GBM_g is the
most accurate model at BND, and GBM_l performs the best at
TBL. In addition, models with non-linear kernels are generally
more accurate than those with linear-kernels. For instance, the
SVR_poly model always outperforms the SVR_li models.

Comparing Tables 9 and 10 with Tables 7 and 8, the proposed
multi-model forecasting framework with different blending algo-
rithms outperforms the single-algorithm models. Even without
the feature selection procedure, the two-layer models have
improved the accuracy of the component models by up to 23.8%
based on NMAE and 25.6% based on NRMSE. For the blending algo-
rithms, the models with non-linear blending algorithms have bet-
ter performance than the models with linear blending algorithms.
This shows that the forecasts produced from the first-layer models
exhibit a non-linear relationship with the actual wind speed. The
model with the polynomial-kernel SVM algorithm is the most
accurate model among all the ensemble models.

The results of the developed hybrid models in conjunction with
the deep feature selection procedure are listed in Tables 11 and 12.
Comparing the same hybrid models as shown in Tables 9 and 10,
the deep feature selection has improved the forecasting accuracy
by up to 21.86% and 19.92% based on NMAE and NRMSE, respec-
tively. Similar to the models without feature selection, the SVM
with polynomial kernel is the best performing algorithm among
all hybrid algorithms. Comparing the developed multi-model
framework with deep feature selection with the single-algorithm
models, the multi-model forecasting model has improved the accu-
racy by up to 30.87% and 30.03% based on NMAE and NRMSE,
respectively. In addition, this best hybrid model is performing bet-
ter than the persistence forecasts at all seven locations.

3.5. Probabilistic results of the multi-model forecasting

In addition to deterministic forecasts, the developed multi-
model methodology can also produce probabilistic forecasts.
Fig. 9 provides an example of the deterministic forecasts along
with the confidence intervals in the form of fan chart, at all seven
locations. The confidence bands are calculated based on the com-
ponent models. The colors of the intervals fade with the increasing
confidence level, ranging from 10% to 90% in a 10% increments. The
intervals are symmetric around the deterministic forecasting
curves with a changing width. When the wind speed fluctuates
within a small range, the confidence bands are narrow, as shown
by hours 0–20 at the BND site and hours 40–50 at the DRA site.
When there is a significant ramp, the uncertainty of the forecasts
is increased and the bands tend to be broader, as shown by hours
20–35 at the BND site. This further proves the necessity of proba-
bilistic forecasting.

To quantify the probabilistic forecasting accuracy, two metrics
are used: reliability and sharpness. Reliability is the correct degree
of a probabilistic forecasting [52], which can be assessed by the hit
percentage [53]. Sharpness is the uncertainty conveyed by the
probabilistic forecasts, which can be computed as the average
interval size of different confident levels [54]. These two metrics
are visualized by the reliability diagram and d-diagram. In our case,
the reliability diagrams of all seven locations are depicted in
Fig. 10. The black solid line represents the ideal probability of the
forecasts. The probabilistic forecasting produced by the developed
multi-model framework is under-confident at BND and SXF, and
over confident at TBL, GCM, PSU, and DRA. The reliability of the
probabilistic forecasts at FPK is the best due to the smallest devia-

Fig. 9 (continued)
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tion to the ideal line. Similarly, Fig. 11 depicts the d-diagrams of the
probabilistic forecasting at all seven location. Except for TBL, the
model shows a consistent sharpness over different locations. The
high sharpness of the probabilistic forecasts at TBL is mainly due
to the frequent ramps of wind speed.

4. Conclusion

In this paper, a novel two-layer hybrid WPF/WSF methodology
in conjunction with deep feature selection was developed. The
framework consists of multiple single machine learning algorithms
in the first layer and blending algorithms in the second layer. Sev-

eral algorithms such as ANN, SVM, GBM, and RF with different ker-
nels were tested and tuned in both layers. A deep feature selection
framework was also developed to optimally determine the most
suitable input combinations for the forecasting models. In the deep
feature selection framework, the PCA, GCT, ACF, PACF, and RFE
methods were adopted and implemented in an optimized
sequence to take advantage of each method. The multi-model wind
forecasting methodology was evaluated using data from seven
SURFRAD locations. Both the hybrid algorithms and the feature
selection approach were found to significantly improve the 1-h-
ahead forecasting performance. The developed multi-model
methodology outperformed the benchmark models by up to
30.87% and 30.03% at the 1-h-ahead forecasting horizon based on
NMAE and NRMSE, respectively. Also, probabilistic forecasting pro-
duced by the developed method quantified the uncertainty of the
forecasts along with the deterministic forecasting.

The developed enhanced deterministic and probabilistic wind
forecasting could benefit power system operators, energy traders,
and wind plant owners from different perspectives. The system
operators can apply the improved forecasts in the real time secu-
rity constrained unit commitment and real time security con-
strained economic dispatch to (i) start up/shut down generators
in response to fluctuations; (ii) reduce the utilization of fast acting
but expensive units; (iii) decrease the reserve levels; and (iv)
reduce the wind curtailment. Overall, the improved wind forecasts
would be helpful in reducing the operation costs and increasing the
system reliability. The forecasts can also be used to determine the
charge and discharge schedule of energy storage in a microgrid
system with distributed wind generators and energy storage.

The potential future work is to validate the effectiveness of the
developed multi-model framework with different time horizons in
short-term forecasting. Additionally, other variables, such as tem-
perature and humidity, can also be forecasted by first-layer models
and blended by the second-layer algorithms.
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