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ABSTRACT

Wind forecasting plays an important role in integrating variable
and uncertain wind power into the power grid. Various forecasting
models have been developed to improve the forecasting accuracy.
However, it is challenging to accurately compare the true forecast-
ing performances from different methods and forecasters due to
the lack of diversity in forecasting test datasets. This paper pro-
poses a time series characteristic analysis approach to visualize
and quantify wind time series diversity. The developed method
first calculates six time series characteristic indices from various
perspectives. Then the principal component analysis is performed
to reduce the data dimension while preserving the important in-
formation. The diversity of the time series dataset is visualized
by the geometric distribution of the newly constructed principal
component space. The volume of the 3-dimensional (3D) convex
polytope (or the length of 1D number axis, or the area of the 2D
convex polygon) is used to quantify the time series data diversity.
The method is tested with five datasets with various degrees of
diversity.
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1 INTRODUCTION

As a renewable energy resource, notable progress has been made in
wind energy in the past decade. However, the uncertain and vari-
able characteristics of the wind resource pose challenges to further
increases in wind penetration. These challenges can be partially
addressed by improving the accuracy of wind speed and power
forecasting. Accurate wind forecasting benefits wind integration by
assisting economic and reliable power system operations from dif-
ferent perspectives. Significant improvements in wind forecasting
have been achieved by developments in forecasting models. Wind
forecasting models can be classified into differing categories based
on the algorithm principles, and are generally divided into physi-
cal models (e.g., numerical weather prediction models), statistical
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models (e.g., machine learning models), and hybrid physical and
statistical models.

Different types of statistical methods have been applied in wind
forecasting, including traditional statistical methods (e.g., time se-
ries methods), machine learning methods, and deep learning meth-
ods. Traditional statistical methods, such as autoregressive inte-
grated moving average (ARIMA) [1], have been initially adopted for
wind forecasting. Then the machine learning algorithms have been
recently used for wind forecasting due to their powerful learning
abilities, such as the neural networks, support vector machines,
etc [2]. Another group of statistical methods is deep learning meth-
ods. Wang et al. developed both the deterministic and probabilistic
models based on the deep learning methods recently [3, 4]. Com-
pared to shallow machine learning methods, deep learning meth-
ods are expected to capture hidden invariant structures in wind
speed/power. More details about the wind forecasting methods are
reviewed in [5-8].

Besides the learning abilities, the performance of these statistical
methods varies greatly based on locations, forecasting horizons,
training data sizes, and other factors. For example, the SVM al-
gorithm was reported to outperform the backpropagation neural
network in [9]. However, the SVM models with linear and poly-
nomial kernels were worse than the radial based function neural
network model in [10]. Additionally, ARIMA performed better than
ANN in [1] but was worse than ANN in [11]. The situation becomes
more complicated when several algorithms are hybridized to im-
prove the forecasting. The conflicting results are largely due to
the small validation datasets utilized for the studies. For instance,
data from only one location is used to test the LSSVM-GSA model
in [9]. Even though three locations’ data was applied in the case
studies in [11], but case one only had 100 samples in the testing data
and the total length of cases two and three was only fifteen days.
Since the superiority of different data-driven algorithms hasn’t
been proved theoretically, the data selected for case studies is espe-
cially important. To the best of our knowledge, the generality of
the experimental data has not been well quantified and evaluated
in the literature. To bridge this gap, this paper proposes a method
to visualize and quantify the generality and diversity of the time
series datasets, which is validated by five wind time series datasets.

The remainder of the paper is organized as follows. Section 2
develops the method to characterize the diversity and generality
of the dataset. The testing datasets with different diversity are
described in Section 3. Section 4 presents the experimental results
and discussion. The conclusions are drawn in Section 5.
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2 DATA DIVERSITY JUSTIFICATION
METHOD

Machine learning methods for wind forecasting proposed in the
literature are usually evaluated by data for a limited number of
locations with a relatively small length of test data, which is usually
insufficient for general applications. To justify the diversity and
generality of the data, a time series characteristic analysis (TSCA)
technique is developed for the target forecasted time series, i.e.,
wind speed or wind power. First, the characteristic indices (CIs) of a
time series are extracted to represent its features from different per-
spectives. Then principal component analysis (PCA) is performed
to reduce the dimension of the CI space. The reduced CI space is
visualized and quantified by the geometric distribution.

2.1 Characterizing Wind Time Series

The TSCA method has been used in time series classification [12],
anomalous time series detection [13], and the forecasting domain [14].
A collection of time series CIs has been utilized in the literature to
quantify the time series characteristics in the fields of demography,
finance, and economics fields [15]. In this study, six CIs are selected
based on the nature of the wind time series: the strength of trend,
the strength of seasonality, the skewness and kurtosis of the wind
time series distribution, the nonlinearity, and the spectral entropy.
Seasonality and trend are two wind time series characteristics con-
sidered in time series forecasting models [16, 17]. Skewness and
kurtosis provide information of the asymmetry and the tail of the
wind distribution in wind forecasting, respectively [18]. Nonlin-
earity and spectral entropy represent the complexity and chaos of
the wind series, respectively, which highly impact the forecasting
performance. Hence, we believe these six CIs can comprehensively
quantify the wind time series characteristics in a static manner. The
mathematical explanations of the six CIs are described as follows.
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Figure 1: Decomposition of the wind speed series.

e Strength of trend CI;: The trend is the long-run increase
or decrease in the time series. To quantify the trend in the

wind time series, additive decomposition is performed using
seasonal trend decomposition based on Loess [19], which
can be described as:

Wy =St+Tt +E; (1)

where Wy, Ty, Sy, and E; are the original wind, trend, season,
and remainder series, respectively, which are shown in Fig. 1.
The strength of trend is defined as [14]:

var(E;)

Ch=1- ——
! var(Wy — S¢)

2)
where (W; — S;) is the de-seasonalised series, E; is the de-
trended and de-seasonalised series, and var is the variance
operator.
Strength of seasonality CIy: Seasonality is wavelike fluctu-
ations of constant length. Similar to CI;, the strength of
seasonality is defined as [20]:
var(E
ChL=1- # (3)
var(Wy — Ty)

where (W; — T;) is the de-trended series.
e Skewness coefficient CI3: The skewness of a univariate distri-

bution can be quantified by the Pearson’s moment coefficient

of skewness, which is defined as the third moment of this

random variable [21]:
Wt —H 3
_— 4
( _ ) ] @

where E is the expectation operator, y is the mean value, and
o is the standard deviation.

e Kurtosis coefficient CI: The kurtosis of the wind distribution
is measured by the Pearson’s moment coefficient of kurto-
sis, which is defined as the fourth moment of the random

variable:
4
( Wi —p ) ] 5)
I

o Nonlinearity CI5: Wind data often has a highly nonlinear
nature, which increases the forecasting difficulty. The non-
linearity measures the nonlinear structure in the time series.
In this study, Terdesvirta’s neural network test is selected to
quantify the nonlinearity [22].

e Spectral entropy Cls: Entropy describes the uncertainty and
complexity in the time series. A large entropy indicates a
more uncertain and chaotic time series. To determine the
entropy, the spectral entropy analysis is used to calculate
the Shannon entropy of the wind time series [23]:

Cl = = ) P(w) log, [P(w)] ©

Cl =E

Cly=E

where P(w) is the probability in the state w.

2.2 Principal Component Analysis (PCA)
Dimension Reduction
PCA is a widely used feature selection and reduction method in

the time series analysis [2]. After extracting CIs of each time series
from the dataset, the normalization method is applied to standardize



every CI separately [24]. The principal components are extracted
by the singular value decomposition (SVD) as [25]:

ci=uswT )

where CI € RN*6 is the normalized CI matrix, U € RV*N and
W € R0 are the left and right orthogonal matrices conforming
UTU = Iy and WTW = I, respectively, and & € RVX0 js a rect-
angular diagonal matrix of positive numbers, 0;,i = 1,2,...,N. UZ
(denoted as T) is the principal component matrix and WT gives
the corresponding coefficients.

In the data dimension reduction, the cumulative contributions
of principal components are used to select the useful principal
components by:
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where ¢’ is the descending o array, ¢ is the pre-specified thresh-
old (that is 80% in this paper), and p is the number of principal
components.

The reduced principal component matrix with the selected prin-
cipal components can be derived from Eq. 7, given by:

T, = [PC; PGy PCylcT=CI-W ()

where PI; is the ith principal component.

2.3 Diversity Visualization and Quantification

To further measure the diversity of each dataset, a two-step diversity
justification method is developed for visualization and quantifica-
tion. The proposed method is based on the geometric characteristic,
therefore is adaptable with different instance space dimensions (de-
termined by p value). The visualization and quantification method
in a 3-dimension (3D) space case is detaily described, and other
space dimension cases are also briefly discussed.

In the 3D space, the distribution of the scatter points character-
izes the diversity. First, the convex polytope of the finite point set
is constructed by a combination of the two-dimensional Quick-hull
Algorithm and the general-dimension Beneath-Beyond Algorithm,
which is described by [26]:

S| S|

Conu(S) = Zaixil Ma; = 0) /\ Zai =1 (10)
i=1 i=1

where § C R is a collection of points in the 3D space; x; means
the ith point; a; is the corresponding coefficient. Second, the vol-
ume of the convex polytope (Vols) formed by the convex hull is
defined as the diversity (Div) of S, which is solved by the Delaunay
triangulation algorithm [27].

For lower- or higher-dimensional spaces, this diversity quan-
tification approach can be adjusted. Considering the 1D case, the
length of the 1D scatter points on the axis represents the diversity
of the dataset. For the 2D space, the minimum polygon of the 2D
scatter points is constructed and its area quantifies the diversity of
the dataset. In case of an instance space with dimension higher than
three, the 3D projections of the high-dimension data characterize

the diversity of the dataset and the average value of Volss measure
the overall diversity of the dataset.

3 EXPERIMENTAL DATASETS

To validate the proposed TSCA method, the diversity of five datasets
are quantified, which are the Global Energy Forecasting Competi-
tion 2012 (GEFCom2012) dataset *, the Global Energy Forecasting
Competition 2014 (GEFCom2014) dataset ', the Surface Radiation
Budget Network (SURFRAD) dataset ¥, the Wind Integration Na-
tional Dataset (WIND) Toolkit dataset ¥, and the Comparison of
Numerical Weather Prediction (CompNWP) dataset [28]. These
datasets contain measurements or simulated wind power/speed
data and meteorological data in Australia and the United States.
Each dataset contains data from several locations with various time
spans. The variables and other standard information are summa-
rized in Table 1. The combination (COMB) of the five datasets is
also included in the visualization and quantification step for better
comparison. The detailed dataset information and selection criteria
are described in the rest of this section.

3.1 The Global Energy Forecasting
Competition 2012 (GEFCom2012) Dataset

The GEFCom2012 dataset contains three years of hourly measured
wind power data from seven wind farms in the same region. Addi-
tional meteorological data was obtained from the European Centre
for Medium-range Weather Forecasts (ECMWF) model. The wind
power data is normalized between 0 and 1. Since the GEFCom2012
data was prepared for the competition, there are periods with in-
tentionally missing data points [29]. The only completely available
variable is the wind power, which is used in this study.

3.2 The Global Energy Forecasting
Competition 2014 (GEFCom2014) Dataset

The GEFCom2014 dataset contains hourly wind farm data from
10 locations in Australia, spanning from 2012-01-01 to 2012-10-01.
The variables in this dataset include the zonal and meridional wind
components forecasted by ECMWF at 10 and 100 meters height
(U10, V10, U100, V100), and the wind power (W P) generation data. The
wind power data is normalized by the nominal capacities of the
wind farm. More details about this dataset can be found in [30].

3.3 The Surface Radiation Budget Network
(SURFRAD) Dataset

SURFRAD was established to support climate research. The SURFRAD
dataset collects meteorological data in climatologically diverse re-
gions around the continental US, based on ground-based sensors. In
this paper, the hourly data from seven locations is used, spanning
from 2015-01-01 to 2015-12-31 [2]. The data contains five variables,
which are the wind speed, wind direction, relative humidity, atmo-
sphere pressure, and temperature measured at a height below 10 m
(far below the height of large-scale wind turbines).

*http://www.drhongtao.com/gefcom/2012
Thttp://www.drhongtao.com/gefcom/2014
'thttps:/ /www.esrl.noaa.gov/gmd/grad/surfrad/
Shitp://www.nrel.gov/grid/wind-toolkit.html
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Table 1: Dataset summary

Dataset No. of locations
GEFCom2012 7
GEFCom2014 10

SURFRAD 7
WIND Toolkit 5 (selected from 126, 000+)
CompNWP 8

Variable (forecasted variable) Length

Wp (Wp) <1 year

Wp, Uto, V10, U100, Vioo (Wp) <1year

Ws,H, T, WD, P (Ws) 1 year

Wp, Ws, H, T, WD, P (Wp) 7 years
Ws (Ws) 1 - 4 year(s)

Note: Wp means wind power, Ujg Vig Uigo Vigo are zonal and meridional wind components at 10 m and 100 m heights, Ws means wind speed, H means
relative humidity, T means temperature, W D means wind direction, and P means pressure. The WIND Toolkit dataset has the simulated forecasted variable,
while the other datasets have measured forecasted variables. The SURFRAD data is measured at 10 m height or below, and the data in other datasets is

measured/simulated at different turbine-scale heights.

3.4 The Wind Integration National Dataset
(WIND) Toolkit Dataset

WIND Toolkit was developed for the next generation of wind inte-
gration studies. The WIND Toolkit dataset is composed of meteoro-
logical dataset, generated by the Weather Research and Forecasting
model with a 2 km grid, and the wind power dataset [31]. The
dataset contains seven years’ data, spanning from 2007-01-01 to
2013-12-31, at more than 126,000 wind locations with a 5-min reso-
lution. In this paper, five wind farms near Dallas, New York City,
Chicago, Miami, and Los Angeles are selected for the sake of topo-
graphical diversity. The data is averaged from five-minute to an
hourly resolution.

3.5 The Comparison of Numerical Weather
Prediction (CompNWP) Dataset

The CompNWP dataset is a collection of hub-height wind speed
measurements at eight locations across the United States used in
our previous research [28]. The dataset is created based on sev-
eral criteria: (i) the data is collected from locations with different
topography and climates; (ii) the data is measured at different hub-
heights (all above 50 m); (iii) the data has a variety of time periods
at different locations. The location and topographical information
can be found in [28].

4 RESULTS AND DISCUSSION
4.1 Characterizing Data Diversity

The CIs of time series in each dataset are extracted using Egs. 1
- 6 first. Then, PCA is utilized to map the six-dimension space
to a smaller principal component space. Using Eq. 8, it is found
that the first three principal components (PCs) cover 82.13% of the
information in the original data. The linear transformation from
the CI space to the first three PCs is given by:

(11)

where CI = [c11 CL, CL CI; CIs CIG] T and W, is the
reduced right orthogonal matrix.

By performing the previous steps, the data of each location is
represented by one point in a 3D space, as shown in Fig. 2a. Differ-
ent markers represent different datasets. Each point stands for the
target time series of one location. The projection drawings of the
3D plot are shown in Figs. 2b - 2d. It is observed that some datasets,

T, = [PC1 PC, PC3] =cr'w,

0.14
o + GEFCom2012 5
+ GEFCom2014| *
+ SURFRAD o .
* WIND Toolkit +
.
8 05 . CompNWP 8 036
a a g
i+ [+ GEFcom2012
. |+ GEFCom2014
SURFRAD
e * WIND Toolkit
CompNWP
-0.86 *
PC2 085 05 0.5 1 1.5
pet PC1
(a) Scatterplot in the 3D in- (b) PC1 vs. PC2 in the instance
stance space space
0
ol [+ GEFCom2012
+ GEFCom2014 .
02 SURFRAD
” * WIND Toolkit
04 - GEFCom2012 CompNWP o
O + GEFCom2014 8
o SURFRAD a-05
-0.6 * |+ WIND Toolkit .
* CompNWP
N e
08 @ . )
.
*
1 . ¢
05 |19C1 15 -0.86 -0.36 0.14
PC2

(c) PC1 vs. PC3 in the instance
space

(d) PC2 vs. PC3 in the instance
space

Figure 2: Instance space of the target wind series in the WFSD
dataset.

such as GEFCom2012 and GEFCom2014, are concentrated in a small
region in the 3D space, which means the different data within these
two datasets has similar characteristics. This may be due to the
highly topological similarity of the Australian locations, where the
data was measured. Comparing the GEFCom2012 and GEFCom2014
scatter points, the GEFCom2014 is more diverse in the PC3 direc-
tion. By comparing the WIND Toolkit dataset to the GEFCom2012
and GEFCom2014 datasets, it is found that the simulated WIND
Toolkit data is more diverse than the measured data. However, the
WIND Toolkit dataset is less diverse in the PC3 direction than the
GEFCom2014, SURFRAD, and CompNWP datasets. The SURFRAD
and CompNWP datasets contain wind speed measurements at dif-
ferent heights. The SURFRAD data is measured at a low height (<
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Figure 3: CI distributions of the wind series characteristic indices in a 3D space. Color bars indicate the CI value.

Table 2: The CI statistics of the WFSD dataset

Time series characteristic index

Chh, ChL CI Cly CIs Clg
008 0 030 004 095 077
GEFCom2012 Z 003 0 004 002 007 001
11 17 0. . .
GEFCom2014 " 0 00 e o7 oo
044 006 039 044 044 079
SURFRAD g 025 010 0.19 031 040 0.04
0.69 006 030 018 095 078
WIND Toolkit Z 007 011 021 028 0.10 0.01
CompNWP 17 (0 0o o1 029 005

Note: p is the mean value and o is the standard deviation.

10 m) while the CompNWP data is recorded at above 50 m height.
But both the SURFRAD and the CompNWP datasets show a high
diversity in all the three directions.

More details can be found from the CI mean (i) and standard
deviation (o) values of each dataset, which are listed in Table 2. The

wind series in different datasets present various strength of trend
(CI). For example, the average CI; of the GEFCom2012 data is 0.08,
while the average CI; of the WIND Toolkit dataset increases to 0.69.
The CI; standard deviation can be as high as 0.19, which means
differences of the trend in different series within the same dataset
are also distinct. Similar findings are observed by comparing the
values in the CI3, Cly, and CI5 columns. However, the wind time
series show a relatively consistent seasonality (CI) and entropy
(CIy) within the same dataset and among different datasets.

The CI value distributions of the five datasets are visualized in
Fig. 3, which provides a better insight of the data characteristics.
The color of each point indicates the CI magnitude, and different
markers represent datasets. Figure 3a shows that the GEFCom2012
and GEFCom2014 datasets have small trend values while the WIND
Toolkit and CompNWP datasets have large trend values. Addi-
tionally, it is interesting to find that the low height (< 10 m) mea-
surement series in SURFRAD dataset has a broader range of trend
values. The seasonality of the data is consistently low in all datasets,
especially in the GEFCom2012 and GEFCom2014 datasets. Scaled
skewness and kurtosis are shown in Figs. 3¢ and 3d, which mea-
sure the asymmetry and peakness of the wind series distributions,
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Figure 4: The minimum convex polytopes of different datasets in
the 3D space. The color bar indicates the value of Div. The Div
values are 3.7 x 1071, 1.3 X 1074, 6.4 x 1074, 1.3 x 107}, 6.2 x 1073,
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SURFRAD, WIND Toolkit, and CompNWP datasets, respectively.

respectively. A large skewness value indicates a clear asymmetry,
and a large kurtosis value means a sharp distribution. It is observed
from these two figures that most datasets have little asymmetry and
low peakedness, except for the SURFRAD and CompNWP datasets.
For the nonlinearity as shown in Fig. 3e, most data series have a
high nonlinear characteristic. Figure 3e also shows that different
data series in the same dataset may have a large variance, such
as the SURFRAD data. All the series have relatively large entropy
values, as shown in Fig. 3f. Moreover, the series in the same dataset
has small variance, with o less than 0.04 as shown in Table 2. Some
other patterns are also observed through the 3D visualization. For
example, the strength of trend increases along the PC1 direction and
the nonlinearity decreases along the PC3 direction. This suggests
that the trend and the nonlinearity have a strong linear relationship
with PC1 and PC3, respectively.

Figure 4 shows the constructed convex polytope of the five
datasets and the COMB dataset (for comparison purpose). By com-
paring the size of the polytopes, it is observed that the GEFCom2012

and GEFCom2014 datasets have the lowest diversity. But the GEF-
Com2014 dataset is approximately five times more diverse than
GEFCom2012, due to the larger span in the PC3 direction. The
WIND Toolkit dataset also has relatively low diversity even though
the selected locations are geographically diverse. Since the wind
power series in the WIND Toolkit sub-dataset is converted from
the simulated wind speed series, the low diversity may be due to
the similar physical laws applied in the Weather Research and Fore-
casting (WRF) model at different locations [32]. It is important to
note that only 5 out of over 126,000 WIND Toolkit locations are
selected in this case study. The SURFRAD and CompNWP datasets
have significantly larger diversity than the other three datasets.
The COMB dataset is much more diverse than any of the single
datasets.

4.2 Forecasting Uncertainty Validation

The diversity of every dataset has been quantified so far, and the
results are validated in this section. The 1-h ahead forecasts are
produced by gradient boosting machine (GBM). Two uncertainty
metrics, Rényi entropy (Hg) and correlation coefficient (r), are used
to measure the chaos in the forecasted series.

GBM is an ensemble machine learning algorithm, which does not
need preprocessing compared to other machine learning algorithms
such as ANN and SVM. GBM model relies on the combination of
‘weak learners’ to create an accurate learner. The combination is
achieved by adding the weighted base learner to the previous model
iteratively. The mathematical description of the GBM algorithm
can be found in [2]. The GBM models are trained by 75% of the data
in each time series, and are used to generate 1-h ahead forecasts
for the rest 25% data.

Two evaluation metrics are chosen to measure the forecasting
uncertainty. The forecasted series Rényi entropy (Hg) is able to
quantify the chaos in the forecasted values. The correlation coef-
ficient between the forecasted and the actual series (r) represents
the linear relation between the two series [33]. A larger Hg value
means the forecasted series is more chaotic and a smaller r value
means it’s more challenging to generate the forecasts from the orig-
inal series. The distributions of the two metrics are shown in Fig. 5.
In Fig. 5a, the SURFRAD and CompNWP datasets have forecasted
series with larger Hg values (above 5.5) compared to GEFCom2012,
GEFCom2014, and WIND Toolkit datasets. Comparing the r values
in the five datasets, it is found that the correlation in the SURFRAD
and CompNWP time series is smaller than the other three datasets.
Both the two metrics indicate that the SURFRAD and CompNWP
datasets are more diverse than the other three datasets. This is
because the learning ability and the forecasting power of the same-
algorithm model (i.e., GBM) is constant. Therefore, the dataset with
large diversity will have more chaos and weak correlation with the
input series. The forecasting results have shown that the proposed
time series characteristic analysis method can successfully quantify
the diversity of forecasting datasets.

5 CONCLUSION

This paper developed an approach to quantify the diversity of the
time series dataset, based on the time series characteristic analysis
(TSCA method). Five wind datasets with different diversity were
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used for the numerical experiment. Six time series characteristic
indices (CIs) were first extracted from each wind series. Then the
principal component analysis (PCA) was used to reduce the CI di-
mension from six to three, by preserving 82.13% of the information.
The diversity of the dataset was visualized and quantified by the CI
distributions in the 3D space. To quantify the diversity, the volume
of the minimum convex polytope formed by the scatter points was
calculated, which was defined as the dataset diversity. The devel-
oped method was validated by evaluating the 1-h ahead gradient
boosting machine forecasting uncertainty. The developed TSCA
method is adaptive to be applied in other forecasting tasks, such as
solar forecasting and electricity load forecasting. For future work,
a systematic framework will be developed to adjust and apply the
TSCA method in different time series forecasting.
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