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Abstract—Accurate short-term forecasting is crucial for solar
integration in the power grid. In this paper, a classification
forecasting framework based on pattern recognition is developed
for 1-hour-ahead global horizontal irradiance (GHI) forecasting.
Three sets of models in the forecasting framework are trained by
the data partitioned from the preprocessing analysis. The first
two sets of models forecast GHI for the first four daylight hours
of each day. Then the GHI values in the remaining hours are
forecasted by an optimal machine learning model determined
based on a weather pattern classification model in the third
model set. The weather pattern is determined by a support vector
machine (SVM) classifier. The developed framework is validated
by the GHI and sky imaging data from the National Renewable
Energy Laboratory (NREL). Results show that the developed
short-term forecasting framework outperforms the persistence
benchmark by 16% in terms of the normalized mean absolute
error and 25% in terms of the normalized root mean square
error.

Index Terms—Classification, solar forecasting, sky imaging,
pattern recognition, support vector machine.

I. INTRODUCTION

Solar energy is one of the most promising candidates to
tackle the energy crisis, but grid integration is still challenging
due to the variability and uncertainty associated with the
power output. Thus, accurate solar forecasting is crucial to
the economic dispatch and to the reliability of the power grid,
as it reduces the uncertainty in power system operations. [1].
Solar generation is mainly affected by the solar irradiance,
which in turn is largely driven by the movement of clouds.

Machine learning models have shown better accuracy than
physical models [2] for short-term (within 1-hour ahead) GHI
forecasting. A number of advanced techniques have been
recently used to enhance short-term GHI forecasting, such as
total sky images, satellite images, and other numerical weather
prediction models. Among these information sources, variables
like the lagging data of the forecasting variable [3], cloud
indices (CI) [4], and red blue ratio (RBR) features [5] are the
most informative inputs to the machine learning models.

The GHI is highly influenced by the weather condition (e.g.,
sunny, partially cloudy, and cloudy). It is generally challenging
to ensure an accurate forecast for different weather types
from a single model. Multi-model solar forecasting based
on a weather type classfication has been shown to be an
effective way to solve this challenge. Other information, such
as temperature [6], the self-organized map [7] [8], and the

weather report [9], have been used as classification criteria.
However, classification forecasting is currently mainly used
in 1-day-ahead or even longer time horizons. Further, those
classification techniques are limited by expensive computation
(e.g., weather report) or inaccurate performance (e.g., temper-
ature).

In this paper, a new short-term GHI forecasting framework
that utlizes pattern recognition to classify the weather type, is
developed to conduct the 1-hour-ahead GHI forecasting.

II. WEATHER PATTERN RECOGNITION

To improve the overall GHI forecasting accuracy over a
day, multiple forecasting models can be trained based on the
weather type. The weather of a single day is categorized
by the average clear sky index (CSI), which is the ratio
of actual GHI and clear sky GHI, into three types (sunny:
CSI > 0.75, cloudy: CSI < 0.25, and partially cloudy:
0.25 ≤ CSI ≤ 0.75 ). To choose the most suitable trained
model for forecasting future GHI, a simple direct classification
can be used based on the calculated CSIs from multiple hours
prior to the forecasting data point. This direct classification
method determines the weather type of a day by its first i
hours‘ CSIs. Figure. 1 illustrates the accuracy of the direct
classification with different numbers of hours adopted. Support
vector regression is used as the forecasting engine for this
illustration. It is shown that the more hours of data used to
determine the weather type, the more accurate the weather
categorization is. The categorization accuracy highly affects
the forecasting performance. From this figure, more than 8
hours of data are needed to achieve a 50% categorization
accuracy, which is too many for real-time forecasting, since
the first 8 hours of the day cannot be forecasted. Thus, pattern
recognition is applied in this paper to identify the weather type
of a day by the first few hours’ data, which is expected to
use fewer hours for the classification. Pattern recognition is a
kind of signal identification technique that is popularly applied
in different engineering fields. In this paper, a support vector
machine (SVM) classifier is adopted as the pattern recognition
algorithm.

A. Feature Extraction

To obtain well-performing pattern recognition models, suit-
able features need to be extracted from different information
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Figure 1: Categorization and forecasting accuracy of the direct
classification method. Overall accuracy (OA) and normailized
mean absolute error (nMAE) are evaluation metrics to mea-
sure the categorization and forecasting accuracy, respectively,
which are defined in Section IV.

sources and fed into the models. The features selected in
this paper are from two categories: i) GHI features: historical
GHI (GHI), clear sky GHI (GHIclr), and CSI; and ii) sky
imaging features: mean (µ), standard deviation (σ), and Rényi
entropy (H) of the normalized sky image pixel RBR (nRBR)
values. GHIclr is the GHI value under no-cloud condition,
which is generated by a clear-sky models. In this paper, the
Ineichen and Perez model [10] is selected as the clear-sky
model. CSI is the ratio of GHI and GHIclr, which can be
used as the criteria to classify the weather types. The other
three features are extracted by sky image processing, and are
expressed as:

RGB =

[
r1 g1 b1

...
...

...
rn gn bn

]
(1)

where r, g, and b represent the red, green, and blue values of
one sky image pixel in the RGB color system. n is the number
of pixels in each image, which is 1392×1040. Then nRBR
of pixels is calculated by:

nRBR =
r − b
r + b

(2)

nRBR is the basis to calculate the three sky imaging features
µ, σ, and H . H is the Rényi entropy, defined as:

H =
1

1− α
log

[
n∑
i=1

(pαi )

]
(3)

when α = 2, it is the order of Rényi entropy. pαi is the
frequency for the ith bin (out of 150 evenly spaced bins evenly
spaced). These 6 features (i.e., GHI , GHIclr, CSI , µ, σ,
and H) compose the feature space serving as the inputs to the
pattern recognition model.

B. Pattern Recognition Algorithm

Classification is a type of pattern recognition method. The
support vector machine (SVM) classifier is selected for clas-
sifying the weather type. To model an SVM classifier, the
outputs (weather types) are assumed to take a form of [11]:

yi = ωTi · κ(x, x′) + ψ (4)

where ωi is an l-dimensional weighted vector. x is the n-
dimensional input vector. n = 6j (j is the number of hours
chosen as classification basis). ψ is the bias constant. κ is the
kernel function that maps the n-dimensional input vector into
an l feature space. The radial basis function (RBF) is selected
as the kernel function, expressed as:

κ(x, x′) = e
− ‖x−x′‖

2%2 (5)

where % is the kernel parameter. The objective function of the
SVM is formulated as:

min
1

2
‖ω‖2 + C(

t∑
i=1

(ξi + ξ∗i )) (6)

subject to:

〈ω, xi〉+ ψ − yi ≤ ε+ ξ∗i , ∀i (7a)
yi − 〈ω, xi〉 − ψ ≤ ε+ ξi, , ∀i (7b)

ξi, ξ
∗
i ≥ 0 (7c)

where ξ and ξ∗ are the upper and lower ε bands of the
deviations around the objective function. C is a tradeoff
parameter. Once the classfier model is trained, the weather
type can be categorized by the inputs vector x with the same
features.

III. FORECASTING METHODOLOGY

The short-term GHI forecasting framework developed in
this paper is summarized in Fig. 2. In addition to pattern
recognition, the framework contains two other parts: the data
preprocessing module and the GHI forecasting module. In the
data preprocessing module, a three-step technique is applied to
improve the pattern recognition and forecasting performance.
The forecasting module is divided into three model sets: Model
Set I (MS–I), Model Set II (MS–II), and Model Set III
(MS–III).

A. Data Preprocessing Module

A three-step data preprocessing is conducted to enhance
the pattern recognition and the GHI forecasting accuracy,
including the following steps: i) elimination, ii) normalization,
and iii) reconstruction. Data elimination aims to exclude data
in the early morning (before 7 : 00 am in this study)
and late night (after 7 : 00 pm), since most GHIs are 0.
Normalization converts the data to the range between 0 and 1.
Data reconstruction aims to group the training data into three
model sets as follows:

G1 = [GHI1 GHI14 ··· GHI1+13(t−1) ]
T (8)



G1

G3

G21

G22

G23

D
at

a 
G

ro
up

 2
D

at
a 

G
ro

up
 1

D
at

a 
G

ro
up

 3

SVM 
Classification 

Model

Pattern Recognition

GHI 
Forecasts

Location 
Information

Sky 
Images

Actual GHI

Normalization

Reconstruction

Elimination

M
od

el
 S

et
 II

MS 21

MS 22

MS 23

M
od

el
 S

et
 II

I

MS 31

MS 32

MS 33

1-day-ahead 
Persistence Model

M
od

el
 S

et
 I

ForecastingFeature Extraction & Data Preprocessing

Figure 2: Overall framework of the short-term GHI forecasting based on sky imaging and pattern recognition.

G2i =

 Xi yi
Xi+13 yi+13

...
...

Xi+13(t−1) y(i+13(t−1))

 , i = 1, 2, 3 (9)

G3 =


X
′
1 Y1

X
′
2 Y2

...
...

X
′
t Yt

 , X ′i =


X4+9(i−1)

X5+9(i−1)

...
X12+9(i−1)

 , Yi =

 y3
y4

...
y12

 (10)

where t is the number of days in the original training data,
Xi = [GHIi GHIclr,i CSIi µi σi Hi ], and yi = GHIi+1. G2
has three matrices (i = 1, 2, 3), each of which only contains
samples at a specific hour (7:00, 8:00, or 9:00 am) and their
1-hour-ahead GHI data. G3 includes samples from 10:00 am
to 6:00 pm within one day for t days.

B. GHI Forecasting Module

Three sets of forecasting models are developed to compose
the forecasting module. MS–I model is a 1-day-ahead per-
sistence model to forecast the first hour’s GHIs (GHI7:00 am)
every day. In this paper, a persistence of cloudiness model that
assumes a constant clear-sky index within the forecasting time
horizon is chosen, which is given by:

GHIp(t+ ∆t) =
GHI(t)

GHIclr(t)
×GHIclr(t+ ∆t) (11)

where GHIp(t+∆t) means the persistent prediction of GHI
at time t within the time horizon ∆t. GHIclr is the GHI
generated by the clear-sky model.

The MS–II and MS–III forecasting models are de-
veloped using machine learning algorithms. Both MS–II
and MS–III have multiple models. MS–II models (i.e.,
MS21, MS22, and MS23) are trained by the data at the
same historical hour (i.e., G21, G22, and G23) to predict

GHIs from 8:00 am to 10:00 am. For example, the machine
learning model is trained by all historical 8:00 am GHIs to
forecast the 8:00 am GHI . MS–III models (i.e., MS31,
MS32, and MS33) are trained by the data of three different
weather types, to predict GHIs from 11:00 am to 7:00 pm.
The SVM regression is used as the forecasting algorithm to
train the MS–II and MS–III models, which conforms to
similar principles as described in Section II.

IV. CASE STUDIES

To validate the developed forecasting framework, we used
the GHI and sky imaging data (latitude = 39.742◦ North,
longitude = 105.18◦ West, elevation = 1,828.8 m) released
by NREL.

A. Classification Accuracy

The proportion of sunny days, partially cloudy days, and
cloudy days in G3 are 71%, 23%, and 6%, respectively. The
sky images and the corresponding pixel nRBR histograms
of three weather types are shown in Fig. 3. It is observed
that the sky image of a cloudy day is significantly different
from the sky images of the sunny and partially cloudy days.
In contrast to Fig. 3b, Fig. 3a has more navy pixels, whose
nRBRs fall into the range [-1, -0.5]. The other three features
are related to the GHIs and GHIclrs. The GHI and GHIclr
curves for different weather types are shown in Fig. 4. It may
be seen that the GHIs among different weather types vary
considerably. Since all six features show a difference among
the three weather patterns, all the 6 features are helpful for
the pattern recognition.

Based on the SVM classification models, the weather pattern
of one day is recognized using the first 4 hours’ features of
the day. The pattern recognition accuracy is evaluated by the
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Figure 3: Sky images and corresponding pixel nRBR his-
tograms of different weather types.

three metrices, which are true positive rate (TPrate), precision
(P ), and overall accuracy (OA). They are defined as:

TPrate =
mii∑n
j=1mij

, i = 1, · · · , n (12)

P =
mii∑n
j=1mji

, i = 1, · · · , n (13)
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Figure 4: Actual GHIs and clear sky GHIs of different weather
types. GHIact,C is the actual GHI in a cloudy day, GHIact,S
is the actual GHI in a sunny day, GHIact,P is the actual GHI
in a partially cloudy day, GHIclr,C is the clear sky GHI in
a cloudy day, GHIclr,S is the clear sky GHI in a sunny day,
and GHIclr,P is the clear sky GHI in a partially cloudy day.

OA =

∑n
i=1mii∑n

j=1

∑n
i=1mij

, i = 1, · · · , n (14)

where n is the number of patterns. mij represents the objects
belonging to the pattern i and being classified to pattern j.

Table I: Pattern recognition results

Sunny Partially cloudy Cloudy
Sunny 87 0 0
Partially cloudy 12 13 0
Cloudy 1 0 0

Note: The actual classifications were determined by the daily average
CSIs which are shown in red. The pattern recognition results are
shown in green.

Table II: Pattern recognition accuracy

Sunny Partially cloudy Cloudy
TPrate (%) 100 52 0
P (%) 87 100 100
OA (%) – 88 –

In Tables I and II, the testing data contains 113 days, 87
of which are sunny days. All of the sunny days are correctly
recognized. The testing data also contains 25 partially cloudy
days, 12 of which are misrecognized as sunny days. And the
only cloudy day in the testing data is misrecognized as a sunny
day. The reason for mis-recognition of cloudy and partially
cloudy days is because the number of these two patterns are
too small in the SVM classifier training data to train the
SVM classifier. But the OA is 88%, which is a significant
improvement compared to the direct classication method (13%
with the first 4 hours data).



B. Forecasting Accuracy

Based on the encouraging pattern recognition results, one of
the MS–III models is selected for a certain day to forecast
1-hour-ahead GHIs from 11:00 am to 7:00 pm. The first four
hours’ GHIs are predicted by four other models in the MS–I
and MS–II . The forecasted GHIs within the day are shown
in Fig. 5. It is shown that the MS–I model has relatively large
errors comparing to other models in the forecasting module;
MS–II models show relatively more accurate forecasting;
MS–III models also have encouraging results, except for
the late afternoon. The significant forecasting errors may be
caused by the seasonal difference between the training and
testing data. Compared to the 1-hour-ahead persistence model,
the developed framework is more accurate.

Figure 5: Step plot of forecasted GHIs within one day.

In order to evaluate the overall forecasting accuracy of
the developed framework, two error criteria are utilized: the
normalized mean absolute error (nMAE) and the normalized
root mean square error (nRMSE), respectively, defined by:

nMAE =
1

n

n∑
i=1

∣∣∣∣fi − yiymax

∣∣∣∣ (15)

nRMSE =
1

ymax

√∑n
i=1 (fi − yi)2

n
(16)

where fi is the forecasted GHI . yi is the actual GHI . ymax
is the maximum actual GHI over the year 1,068 W/m2. n
is the sample size 1,469. The evaluation results are listed in
Table III. The overall results are calculated based on the time
series data compiled from three model sets’ results.The overall
performance of the proposed framework outperforms the 1-
hour-ahead persistence model by 16% in terms of nMAE
and 25% in terms of nRMSE.

Table III: Forecasting accuracy

P MSI MSII MSIII Overall
nMAE (%) 7.93 2.69 7.40 6.92 6.70
nRMSE (%) 12.94 4.14 10.65 9.88 9.75

Note: The overall nMAE and nRMSE performance of the devel-
oped framework are in boldface. P stands for persistence of cloudiness
model.

V. CONCLUSION

In this paper, a classification forecasting framework in
conjunction with pattern recognition was developed for short-
term 1-hour-ahead GHI forecasting. The developed framework
recognized the weather pattern of each single day using the
SVM classifier and selected the most suitable forecasting
model. Multi-set of models were applied in the forecasting
module to forecast the GHIs from 7:00 am to 7:00 pm. The
developed framework has shown a promising pattern recog-
nition performance and performed better than the persistence
model for 1-hour-ahead GHI forecasitng. The potential future
work is to validate the developed framework with larger data
sets and to compare to more benchmark models.
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