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Abstract—Wind power ramps (WPRs) are particularly im-
portant in the management and dispatch of wind power and
currently drawing the attention of balancing authorities. With the
aim to reduce the impact of WPRs for power system operations,
this paper develops a probabilistic ramp forecasting method
based on a large number of simulated scenarios. An ensemble
machine learning technique is first adopted to forecast the basic
wind power forecasting scenario and calculate the historical
forecasting errors. A continuous Gaussian mixture model (GMM)
is used to fit the probability distribution function (PDF) of
forecasting errors. The cumulative distribution function (CDF)
is analytically deduced. The inverse transform method based
on Monte Carlo sampling and the CDF is used to generate a
massive number of forecasting error scenarios. An optimized
swinging door algorithm is adopted to extract all the WPRs
from the complete set of wind power forecasting scenarios. The
probabilistic forecasting results of ramp duration and start-time
are generated based on all scenarios. Numerical simulations on
publicly available wind power data show that within a predefined
tolerance level, the developed probabilistic wind power ramp
forecasting method is able to predict WPRs with a high level of
sharpness and accuracy.

Index Terms—Gaussian mixture model, probabilistic wind
power ramp forecasting, scenario generation.

I. INTRODUCTION

Large fluctuations in wind speed in a short time period can
cause significant wind power ramps (WPRs) and threaten the
power system’s reliability [1], [2]. WPRs can generally be
divided into up-ramping, down-ramping, or non-ramping peri-
ods. This is becoming more challenging for system operators
as larger wind power penetrations are seen in power systems
worldwide.

A number of statistical and machine learning methods
have been developed in the literature to forecast wind power
ramps at multiple forecast horizons. Liu et al. [3] developed
a hybrid forecasting model to combine an orthogonal test
with support vector machine. Cutler et al. [4] forecasted
wind power ramps and evaluated the efficiency of the Wind
Power Prediction Tool (WPPT) and the Mesoscale Limited
Area Prediction System (MesoLAPS) for ramp forecasting.
Greaves et al. [5] forecast up-ramps and down-ramps with
uncertain start times and incorporated a numerical weather
prediction (NWP) model to reduce the forecasting errors.
However, most of existing methods focus on the deterministic
ramp forecasting. Probabilistic ramp forecasting is expected
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to provide more information, and thus produce better system
schedules for balancing authorities. Taylor [6] used a multi-
nomial logit structure and categorical distribution to estimate
the ramp event probabilities for different thresholds. Li et
al. [7] provided additional probabilistic information for wind
ramp occurrences by using a logistic regression technique.
This paper seeks to develop a probabilistic wind power ramp
forecasting method to characterize different key ramp features.

The organization of this paper is as follows. In Section II,
a wind power forecasting scenario generation method using
the Guassian mixture model is developed. In Section III, the
methodology of probabilistic wind power ramp forecasting
is presented. Case studies and results analysis performed on
publically available wind power data are discussed in Section
IV. Concluding remarks and future work are summarized in
Section V.

II. WIND POWER FORECASTING AND MASSIVE
FORECASTING ERROR SCENARIO GENERATION

A. Basic Forecasting Scenario Generation Using Ensemble
Machine Learning Techniques

Due to the nonlinear and non-stationary characteristics of
wind power, it is challenging for a single machine learning
algorithm to produce forecasts that are consistently better
than all other methods. Ensemble machine learning techniques
blend multiple forecasts from individual forecasting algorithms
to generate a forecast superior to each individual forecast [8].
In this paper, an ensemble machine learning model is adopted,
which integrates four machine learning algorithms: neural
networks (NN), support vector machines (SVM), gradient
boosting machines (GBM), and random forest regression (RF).

B. Forecasting Error Scenario Generation Based on Gaussian
Mixture Models

Historical wind power forecasting errors of the ensemble
model are calculated and recorded. A Gaussian mixture model
(GMM) is used to fit the distribution of forecasting errors. The
GMM is a probabilistic model that assumes all the data points
are generated from a mixture of a finite number of Gaussian
distributions with multiple parameters. The GMM generally
performs better than other specific distributions that follow an
asymmetric distribution [9], [10], especially for multi-modal



probability distributions. The generalized GMM is formulated
as:

fa(z; Naswi, pi, o)

—sz g

where 2" is the data set of forecasting errors, x, with the
total number of N,. .# is the set of GMMs with the total
number of Ng. A two-stage optimization model is constructed
to estimate all the parameters of fq, i.e., Ng, w;, p;, and
o;. The first stage aims to determine the expected value (or
mean value) vector M (u; € M), the standard deviation vector
3 (0; € ), and the weight coefficient vector Q (w; € ),
ie., fo(z;Ng;wi, i, 04) = fo(x;Ng). The non-linear least
square method with the Trust-Region algorithm [11] is adopted
in the first stage. The second stage aims to determine the op-
timal number of GMM, Ng ¢, by minimizing the Euclidean
distance between the actual PDF, fa, and the PDF of GMM,
fa. e, fa(z;Ng) ——
formulated as:
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The cumulative distribution function (CDF), F(, is essential
for sampling due to its monotonicity and can be analytically
expressed as:
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where erf is the Gaussian error function and defined as:
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Equation (3) is an indefinite integral with a constant C that
is solved by (5). Since both the actual and forecast wind power
are normalized into the range [0, 1], the forecasting errors are
distributed into the range [-1, 1]. Thus F(z < —1) = 0 and

Fg(z > 1) = 1. In this paper, we use z = —1.1 (Fg(—1.1) =
0) to calculate C, shown as:
Ng
ﬁ —1.1-— i
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To sample a random forecasting error, &, the inverse trans-
form method that has been widely utilized in the financial
engineering literature [12] is adopted in this paper and formu-
lated as:
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where r is a random variable uniformly distributed over [0,
1. Fg ! is the inverse function of Fa. pvnp and Yynp are
the mean and covariance vectors of the multivariate normal
distribution (MND), respectively. In this paper, puymND iS
defined as a zero Ng.-by-T§, matrix. Ny is the total number
of forecasting error scenarios. Ty, is the maximum forecasting
horizon. ¥ynp is a Tg-by-Tq, symmetric positive semi-
definite matrix with a covariance o, ,,,, which can be modeled
by an exponential covariance function [13] and is defined as:
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where A is the range parameter that controls the strength of
the correlation of random variables r,, and 7,,.
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Thus, the forecasting error scenarios are generated by setting
a total number of Ny, with a specific forecast horizon of T§,
(e.g., day-ahead, hours-ahead, or minutes-ahead). A complete
set of the wind power forecasting scenarios is obtained by
combining the basic ensemble deterministic wind power fore-
cast with all the forecasting error scenarios.

III. PROBABILISTIC RAMP FORECASTING METHODOLOGY
A. Wind Power Ramp Detection Method

Based on the generated wind power forecasting scenarios,
an optimized swinging door algorithm (OpSDA) [14] is used
to detect all the wind power ramps at each timescale. In
the OpSDA, the swinging door algorithm with a predefined
parameter, ¢, is first applied to segregate the wind power data
into multiple discrete segments. Then dynamic programming
is used to merge adjacent segments with the same ramp
direction and relatively high ramping rates. A brief description
of the OpSDA is introduced here, but more details can be
found in [14]. Subintervals that satisfy the ramping rules are
rewarded by a score function; otherwise, their score is set
to zero. The current subinterval is retested as above after
being combined with the next subinterval. This process is
performed recursively until the end of the dataset. A positive
score function, S, is designed based on the length of the
interval segregated by the swinging door algorithm. Given a
time interval (u, v) of all discrete time points and an objective
function, J, of the dynamic programming, a wind power ramp
is detected by maximizing the objective function, J:

J(u,v) = max [S(u, k) + J(k,v)], u<w (3)
where £ is the time point over the time interval (u, v).

B. Probabilistic Wind Power Ramp Forecasting

Probabilistic wind power ramp forecasts are generated by
using a massive number of forecast scenarios, and extracting
out their ramps with the wind power ramp detection method.
The overall framework for generating probabilistic wind power
ramp forecasts is illustrated in Fig. 1, which consists of four
major steps: deterministic wind power forecasts, forecasting
scenario generation, wind power ramp detection, and prob-
abilistic forecasting and analysis. The four major steps are
described as follows:

e Step 1: Based on historical wind power data, an ensem-
ble machine learning method blends the forecasts from
four individual machine learning techniques to generate
deterministic wind power forecasts.

o Step 2: Historical wind power forecasting errors are
generated from the basic ensemble forecasting model.
The GMM probability distribution model is adopted to fit
the probability distribution of historical wind power fore-
casting errors and the cumulative distribution of GMM
is analytically deduced. The inverse transform method
based on Monte Carlo sampling [15] is used to simulate
the massive wind power forecasting error scenarios.

e Step 3: A wind power forecasting scenario is generated
by adding the basic ensemble forecasting data with each
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Fig. 2. A three-dimensional plot of one particular timeslice of wind power
forecasting scenarios spanning from April 17% to 22" 2007 near Dallas,
Texas, with an hourly data resolution. An example with 125 scenarios is
illustrated here.

individual forecasting error scenario. A three-dimensional
plot with massive wind power forecasting scenarios is
illustrated in Fig. 2. Each scenario is put into the OpSDA
algorithm to extract all the significant wind power ramps.

o Step 4: The probabilistic wind power ramp forecasts are
generated and analyzed, such as the ramp start-time and
duration.

IV. CASE STUDIES
A. Test Case

The developed scenario-based wind power ramp forecast-
ing model was verified using the Wind Integration National
Dataset (WIND) Toolkit [16]. The data represent wind power
generation from January 1% 2007 to December 31* 2012. The
wind plants used in this analysis are from 711 wind sites
near Dallas, Texas, with an hourly data resolution. The total
rated wind power capacity is 9,987 MW. The training data use
historical wind power data recorded from January 1% 2007 to
April 16t 2007, with a total of 2,544 hours. The test data use
the consecutive data from April 17™ 2007 to August 22" 2007,
with a total of 3,000 hours. An example of the consecutive
test data spanning from April 17" to 22" 2007 is shown in
Fig. 2 for the convenience of visual inspection. The ensemble
machine learning model consists of seven Neural Network
models, five Support Vector Machine models, four Gradient
Boosting Machine models, and two Random Forest models.
The door width of the OpSDA is set as 0.2% of the rated
capacity. The total number of forecasting scenarios is set as
Ng. = 10, 000.

B. Performance of Different Distribution Models for Wind
Power Forecasting Errors

Fig. 3 compares the probability and cumulative distributions
of wind power forecasting errors from six distributions. The
optimal parameters of weight coefficients, mean values, and
standard deviations are listed in Table I. The coefficient of
determination, R2, is used to evaluate the correlation between
the observed and modeled data values. The Extreme Value dis-
tribution has the smallest coefficient of determination, 0.8328,
and the GMM distribution shows the largest coefficient of
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Fig. 3. Probability and cumulative distribution plots for hourly forecasting er-
rors using six distribution models. Extreme Value: 1 = 0.0267, 0 = 0.0643;

Normal: ;1 = 1.72 x 1076, 0 = 0.0522; Logistic: 1 = —3.09 x 10~%,0 =
0.027; t Location-Scale Distribution: 4 = —2.53 x 10~%, o = 0.0346,v =
3.11; and Hyperbolic: 7 = 4.72 x 1073, = 2.09 x 1074,§ = 7.69 x
1076, u = —3.39 x 10~4.
TABLE I
PARAMETERS OF GMM WITH FIVE MODELS (NG opt = 5)
Number of GMMs w w o

1 55,119 -0.0031  0.0041

2 5,121 -0.0031  0.0041

3 1.1068  -0.0205  0.0065

4 7.1448  0.0034  0.0404

5 2.5256  -0.0089  0.0944

determination, 0.9922. The coefficients of determination of
Normal, Logistic, t Location-Scale, and Hyperbolic distribu-
tions are 0.9352, 0.9698, 0.9828, and 0.9873, respectively.
Both the coefficient of determination and Fig. 3 show that the
GMM distribution outperforms other distributions in modeling
the wind power forecasting errors.

C. Probabilistic Forecasting of Ramp Duration

After generating a massive number of wind power fore-
casting scenarios as shown in Fig. 2, the number of upward
and downward ramps occurring within a tolerance value, 4, is
calculated and expressed by N and N§,, .. respectively. The
forecasting probability of the upward and downward ramps
within the tolerance value, 4, is represented by pﬁp and pS_ ...
and formulated as pJ, = Pr(NJ,, N | 6) = NI, /Ny and

up?’
Poown = Pr(NSns Nsc | 8) = N3,/ Nsc, respectively. The

down
probabilities of occurrence forecasts for two different upward
and downward WPRs are illustrated in Fig. 4 and Fig. 5,
respectively. Three cases with different tolerance values are
studied: without tolerance (6=0), 1-hour tolerance (6=1), and
2-hour tolerance (§=2). For each upward or downward ramp,
the occurrence probability is calculated within a certain time
interval. The probability of WPR occurrence is increased with
the tolerance value, as illustrated by the wider banded areas.

The sensitivity results of different tolerance values are illus-
trated in Fig. 6. It is shown that the probability of wind power
ramps increases with the tolerance value. This information can
be potentially used by power system operators to determine the
probability of wind power ramps based on the corresponding
tolerance value. For instance, if the power system operators
set the tolerance value as 1 hour, i.e., § = 1, the probability of
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Fig. 4. Upward ramps of probabilistic forecasting of ramping duration with
banded areas.
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Fig. 5. Downward ramps of probabilistic forecasting of ramping duration
with banded areas.
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Fig. 6. Sensitivity of wind ramp duration probability to the tolerance value.

correctly forecasting a ramp is larger than 90% for all ramps.
D. Probabilistic Forecasting of Ramp Start-Time

In addition to the occurrence probability of ramp duration,
the balancing authorities are also concerned with the proba-
bility of ramp start-time so as to prepare sufficient ancillary
services, such as ramping reserves. Thus, we also calculate the
probability of ramp start-time.

Fig. 7 illustrates the probability of up-ramp start-time. It
is shown that both the first and the third up-ramps are suc-
cessfully located into the time interval with a high occurrence
probability. For instance, the first up-ramp starts during 27-
28 hours with the highest probability, 95.16%, and the third
up-ramp starts during 63-64 hours with a high probability,
89.52%. The start-time of critical up-ramps is also challenging
to be accurately forecasted due to its high uncertainty. For
instance, during the 1-2 and 19-20 hours, there should not be
any ramps in actual wind power data. But for the simulation
results, the occurrence probability is relatively high. This
can be partially attributed to the incorrect ramp magnitudes
resulted by the large forecasting errors.

E. Forecasting Accuracy: Reliability and Sharpness

The reliability and sharpness metrics have been widely
used to evaluate the probabilistic forecasting accuracy [17].
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Fig. 8. Reliability and ¢é-diagrams for evaluating the probabilistic ramp
forecasting accuracy.

Reliability is the correct degree of a probabilistic forecasting
assessed by the hit percentage. Sharpness is the uncertainty
conveyed by the probabilistic forecasts estimated as the aver-
age interval size of different confident levels [18].

Fig. 8 compares the reliability and sharpness metrics for
evaluating the probabilistic up- and down-ramp forecasting
accuracy. The reliability of the probabilistic up-ramp forecast
performs better than that of the probabilistic down-ramp fore-
cast, since the estimated coverage curve of up-ramps converges
closer to the ideal nominal proportion line (in blue). For the
sharpness, both of the sharpness curves of the probabilistic
up- and down-ramp forecasts are relatively low (under 40%).
The probabilistic forecast of up-ramps shows a relatively lower
sharpness than that of down-ramps.

V. CONCLUSION

This paper developed a probabilistic wind power ramp
forecasting method based on a large number of wind power
forecasting scenarios. A deterministic wind power forecast
was first generated by an ensemble machine learning model,
and then used to calculate historical forecasting errors. A
continuous Gaussian mixture model (GMM) was utilized to
fit the probability distribution function (PDF) of wind power
forecasting errors and to analytically deduce the corresponding
cumulative distribution function (CDF). The inverse transform
method based on the Monte Carlo sampling and CDF was used
to generate the large number of forecasting error scenarios.
An optimized swinging door algorithm was used to extract
all the WPRs. Numerical results of a case study showed the
effectiveness of the proposed method.

In the future, this research can be further improved by: (i)
developing probabilistic wind power ramping products; and

(i) improving the probabilistic forecasting performance of
critical wind power ramps.
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