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Abstract—Wind power ramps (WPRs) are significantly im-
pacting the power balance of the system operations. Better
understanding the statistical characteristics of ramping features
would help power system operators better manage these extreme
events. Toward this end, this paper develops an analytical
truncated Gaussian mixture model (TGMM) to fit the probability
distributions of different ramping features. The non-linear least
square method with the Trust-Region algorithm is adopted to
optimize the tunable parameters of mixture components; the
optimal number of mixture components is adaptively solved
by minimizing the Euclidean distance to the actual probability
distribution. A sign function is utilized to truncate the original
GMM distribution and obtain the final TGMM. The cumulative
distribution function (CDF) of TGMM is analytically derived.
Numerical simulations on publically available wind power data
show that the parametric TGMM can accurately characterize the
irregular and multimodal distributions of each ramping feature.

Index Terms—Probability distribution, statistical analysis,
truncated Gaussian mixture model, wind power ramps.

I. INTRODUCTION

With the increase of wind power penetration in the power
grid, the intermittence and fluctuation of wind power have
drawn more and more attention, especially under extreme
weather conditions. As a type of extreme events, wind power
ramps (WPRs) have been investigated in recent studies [1],
[2]. WPRs have a serious impact on the power balance of the
system, and may lead to an instability of the power system fre-
quency, load shedding, and other reliable operations. Statistical
analysis of WPRs would help power system operators better
understand the characteristics of ramping features, thereby
assisting them to manage these extreme ramping events.

However, currently there are few studies in the literature
focusing on accurately characterizing the parametric distri-
butions of wind power ramping features, which are apt to
be practically integrated into the power system scheduling
models like the chance-constrained economic dispatch and
unit commitment [3]. Sevlian et al. [4] characterized and
analyzed ramping magnitude, duration, and rate by empir-
ical distributions. But the empirical distribution is a step
function with discrete (rather than continuous) probability
values, which cannot be analytically expressed. Cui et al. [5]
depicted the ramping feature statistics by using the kernel
smoothing probability density (ksdensity) estimate. However,
the ksdensity distribution was still a nonparametric model.
Ganger et al. [6] utilized the Fréchet distribution (a generalized
extreme value distribution) to fit the empirical wind power

ramping magnitude. However, the Fréchet distribution is a
unimodal distribution that cannot accurately fit the multimodal
distribution.

The Gaussian mixture model (GMM) has been widely used
in the statistics community, and recently been applied in
the renewable energy areas [7]-[9]. The GMM specializes
in characterizing the multimodal and irregular probability
distribution. Ke et al. [7] customized the GMM by three
Gaussian functions and utilized the GMM to approximate the
PDF of wind power generation with triple probability peaks.
Singh et al. [8] represented all irregular probability distribution
functions of load using GMM in various distribution system
applications. Valverde et al. [9] proposed the use of GMM
to represent non-Gaussian correlated wind power output and
aggregated load demands for modeling the probabilistic load
flow. Wind power ramps are high nonlinear and uncertain,
and likely present multi-mode in the distribution of ramping
features. Thus, this paper develops a GMM model to fit the
PDF and CDF of different ramping features.

The developed GMM model is expected to accurately model
the distribution of different ramping features, therefore being
used in a variety of power system operations. The main contri-
butions of this paper include: (i) developing a truncated GMM
(TGMM) to fit the irregular and multimodal distributions of
wind power ramping features; and (ii) deducing the analytical
CDF expression of the TGMM.

The organization of this paper is as follows. In Section II,
a wind power ramp extraction method using an optimized
swinging door algorithm is briefly introduced. Section III
presents the analytical expressions of the probability and
cumulative distributions for the developed truncated Gaussian
mixture model. Case studies and result analysis performed
on publically available wind power data are discussed in
Section IV. Concluding remarks and future work are discussed
in Section V.

II. WIND POWER RAMPING FEATURES EXTRACTION

An optimized swinging door algorithm (OpSDA) [5] is used
to detect all the wind power ramps in historical wind power
data. A brief example of wind power ramps detection in one
day is illustrated in Fig. 1. In the OpSDA, the swinging door
algorithm with a predefined parameter, ¢, is first applied to
segregate the wind power data into multiple discrete segments.
Then dynamic programming is used to merge adjacent seg-
ments with the same ramping direction and relatively high



0.7

---- Wind Power
305 .
=" “,
© 0.4 ‘
00.0-3
202 AP
\Y) i
0.1 K X N
0 - |
02 46 81012141618202224
Time [h]

Fig. 1. An example of wind power ramps in one day.

ramping rate. A brief description of OpSDA is introduced here
and more details can be found in [5]. Subintervals that satisfy
the ramping rules are rewarded by a score function; otherwise,
their score is set to zero. The current subinterval is retested
as above after being combined with the next subinterval. This
process is performed recursively to the end of dataset. Finally,
significant wind power ramps with the maximum score are
successfully extracted.

III. A TRUNCATED GAUSSIAN MIXTURE MODEL
A. Distribution of Ramping Features

Generally, wind power ramping features consist of ramping
magnitude, duration, and change-rate. The statistic distribu-
tion of each ramping feature is significantly irregular and
asymmetrical with multiple peaks. In addition, due to the
definition of WRPs, the distributions of ramping features are
truncated. For instance, if WPRs are defined by the threshold
of the ramping magnitude without constraining the ramping
duration and rate, both probability distributions of ramping
magnitude and rate will be truncated. If WPRs are defined by
the thresholds of both ramping magnitude and duration, the
probability distributions of all three features will be truncated.

B. Truncated Gaussian Mixture Model

The ramping features are detected by the OpSDA based
on a large wind power data set. To model the irregular and
asymmetric distribution of ramping features, the Gaussian
mixture model (GMM) is used and developed in this paper.
The GMM model is a probabilistic model that assumes all
the data points are generated from a mixture of a finite
number of Gaussian distributions with multiple parameters.
GMM performs better in irregular distribution models [7], [8],
especially for the probability distribution with multiple peaks.
The generalized GMM model is formulated as:
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where 2 is the data set of a ramping feature, x, with a
total number of N,. .# is the set of Gaussian mixture models
(GMM) with a total number of Ng. A two-stage optimization
model is constructed to calculate all the parameters of fg,
ie., Ng, wi, u;, and o;. The first stage aims to determine
the expected value (or mean value) vector M (u; € M),
the standard deviation vector ¥ (o; € X), and the weight
coefficient vector Q (w; € Q), ie., fo(z;Ng;wi, i, 0;) —
fa(z;ng). The non-linear least square method with the Trust-
Region algorithm [10] is adopted in the first stage to ob-
tain the parameters of the mixture components. The second
stage aims to determine the optimal number of components,
Ng,opt, by minimizing the Euclidean distance between the
actual PDF, PDF 4, and the primary PDF of GMM, fg, i.e.,

Na,opt L . .
fa(xz;Ng) —=2% fq(z). Thus, the objective function is
formulated as:

min [ [fa(z;Ng) — PDFA)? )
zeX

A sign function, sign(z), is utilized to truncate the original
PDF function of GMM, fq(z), given by:

>
sign(x) = { L, z20

0, z <0
Then the final PDF of TGMM, frg(z), can be analytically
formulated as:

fra(z) = fo(z) x sign(z — Tr) )

where Tr is the threshold for defining wind power ramps. In
this paper, a wind power ramp is defined as the change in wind
power output larger than 20% of the rated capacity without
constraining the ramping duration and rate. The threshold of
ramping magnitude, Trys, equals 0.2. The threshold value of
ramping duration, Trp, equals 0. The threshold of ramping
rate, Trg, is calculated by Try/(maxz(Dr)), where max(Dr)
represents the maximum value of ramping duration.

3)

C. Analytical Expression of the CDF of TGMM

The cumulative distribution function (CDF), F, is another
essential statistic metric to analyze ramping features due to its
monotonicity, which can be analytically expressed as:
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where erf is the Gaussian error function and defined as:

erf(x) = % /Om et at (6)

Equation (5) is an indefinite integral with a constant C,
which can be solved by (7). Since the detected ramping
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Fig. 2. PDFs of ramping magnitude of five distribution models.

magnitudes are normalized into the range [0, 1], it can be
derived that Fg(z < 0) = 0 and Fg(xz > 1) = 1. Hence,
we use x = —0.1 (Fg(—0.1) = 0) to obtain the constant, C,
in (5), shown as:
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Considering the sign function in (3), the final CDF of
TGMM, Frg(x), can also be analytically formulated as:

Frg(x) = Fe(z) x sign(z — Tr) (8)
IV. CASE STUDIES

A. Test Case and Benchmarks

The proposed truncated Gaussian mixture model is eval-
uated and analyzed based on the Wind Integration National
Dataset (WIND) Toolkit [11]. The WIND Toolkit data rep-
resent wind power generation and forecasts spanning from
January 1%* 2007 to December 315° 2012, sampled every 5
minutes. 711 wind sites located around Dallas, Texas are
selected for this case study. The rated capacity is 9,987 MW.
The total number of samples is 631,296, which is sufficiently
large for statistical analysis of ramping features. There are
1,586 wind power ramps detected by OpSDA in total. The
door width of OpSDA is set as 5% of the rated capacity.

For comparison, one nonparametric and three parametric
distributions widely used in statistical analysis are selected
in the case study. The normal distribution has been widely
used to design the random number generator and generate
load forecasting errors [12]. The logistic distribution is used
for growth models in logistic regression and has longer tails
and a higher kurtosis than the normal distribution [13]. The
hyperbolic distribution has been used to accurately analyze
and characterize wind and load forecasting errors [14]. The
nonparametric kernel smoothing density (ksdensity) distribu-
tion has been widely used in the wind speed distribution
characterization and renewable energy forecasting [15].

B. Metrics for Evaluating the Fitting Performance

To compare the performance of TGMM with differ-
ent distribution models, a suit of widely used metrics in
the wind power forecasting community are adopted to as-
sess the distribution accuracy [15]. These metrics include
correlation coefficient, normalized root mean square error
(NRMSE), maximum absolute error (MaxAE), mean absolute
error (MAE), Kolmogorov-Smirnov test integral (KSIPer),
standard deviation, and fourth root mean quartic error
(4RMQE). The correlation coefficient is a measure of the
correlation between the actual PDF and the PDF of fitting
distribution models. NRMSE is suitable for evaluating the
overall accuracy of the fit while penalizing large fitting errors
in a square order. MaxAFE is suitable for evaluating the
largest fitting error. MAE is suitable for evaluating uniform
fitting errors. KSIPer evaluates the statistical similarity be-
tween the actual PDF and the PDF of fitting distribution
models. Standard deviation quantifies the uncertainty of the
fit. ARMQE is suitable for evaluating the overall accuracy of
the fit while penalizing large fitting errors in a quartic order.
A smaller value indicates a better forecast for most of the
metrics, only except for the correlation coefficient. Detailed
information about the metrics can be found in [15].

C. Statistical Comparisons of Ramping Magnitudes

In this case, seven Gaussian components are found to
accurately fit the distribution of ramping magnitude. There
are totally 21 parameters (3x7) in the TGMM distribution
model, which are optimized and listed in Table I. Fig. 2
compares the probability of the actual histogram distribution
and five distribution models. For the actual distribution, there
are three peaks located around 0.32 p.u., 0.41 p.u., and
0.65 p.u.. It means that the wind power output changes will
occur at these three values in a high probability, which is
informative and could be used in power system operations. For
example, ramping reserve requirements could be designed by
considering these three peak values instead of only one peak.
Since the normal, logistic, and hyperbolic models conform to
the unimodal distribution, only one single peak is depicted
with the highest probability. For both the normal and logistic
distributions, the peak values are 0.5 p.u.. For the hyperbolic
distribution, the peak value is about 0.45 p.u.. This ill-
information may mislead power system operators to mainly
focus on coping with the WPRs with magnitudes spanning
from 0.45 p.u. to 0.5 p.u., and neglecting other significant wind
power ramps around 0.32 p.u., 0.41 p.u., and 0.65 p.u.. Though
the nonparametric model, ksdensity, is well-known in fitting
the irregular distributions, it presents a worse performance than
the TGMM from visual inspection. Besides, the nonparametric
nature of ksdensity restricts its application in practice. This is
because the analytical expressions of both PDF and CDF of the
distribution model are generally required in stochastic power
system operations, such as chance-constrained constraints in
economic dispatch or unit commitment.

Another interesting finding in fitting the distribution is
the truncation part in the left tail area in Fig. 2. Due to



1
092 ° oo
2 -
c 0.9 o 1foe +#
'% 0.8 foss § 088 %
2 0. 4 0874
B 0608 8 qlose
o 0.82f S06 08
g 7 72 74 76 “E— : :
204 07 072 0T 0TS —Actual ©0.4
% ----Normal g + Normal
€ -+ Logistic E 0.2 + Logistic
202 Hyperbolic © R Hyperbolic
© i 2 - + ksd
ksdensity 3 0 R sdensity
111 —TGMM + TGMM
oy P

0 0.2 0.4 0.6 0.8 1
Magnitude [p.u.]

(a) CDF

=]

0.2 0.4 0.6 0.8 1
Quantiles of Actual Sample

(b) Q-Q plot

Fig. 3. Cumulative distributions and Q-Q plots of ramping magnitude using
five distribution models.

TABLE I
PARAMETERS OF TGMM WITH SEVEN COMPONENTS (NG opt = 7)

Number of Components w °w o
1 1.0427  0.4081 0.0217
2 0.8444 03413 0.0138
3 -0.0001 06327 7.11x10~%
4 -0.0001 05378 2.22 x 10~14
5 1.3551  0.2851 0.0719
6 -0.5211  0.5427 0.0342
7 2.0049  0.5725 0.2312

the definition of WPRs (20% of the rated capacity), all the
ramping magnitudes are greater than or equal to 0.2 p.u.. For
the ramping magnitude that is less than 0.2 p.u., the occur-
rence probability should be zero. Under this circumstance,
the TGMM distribution performs much better than any other
distributions due to the truncation process, which makes the
fitting distribution of the TGMM more realistic.

For quantitative comparison, Table II lists the fitting
metrics for different distribution models. Regarding the
correlation coefficient metric in green, the TGMM shows the
largest value. Regarding other metrics in blue, the TGMM
shows the smallest value. This indicates that the TGMM
outperforms other parametric distributions, and even performs
better than the nonparametric distribution, ksdensity, as a
parametric model.

Fig. 3a and Fig. 3b compare the performance of the CDF
and Q-Q plot for different distributions. Both the CDF and Q-
Q curve of the TGMM distribution fit the actual curve better
than other four distributions.

D. Statistical Comparisons of Ramping Duration and Rate

In addition to ramping magnitude, ramping duration and rate
are another two important ramping features. In this section, the
probability distributions of ramping duration and rate are also
characterized and analyzed by using the TGMM.

Fig. 4a compares the probability distribution of ramping
duration by using five distribution models. There are five Gaus-
sian components that optimally fit the distribution of ramping
duration. Due to the irregular and asymmetric characteristics
of the ramping duration distribution, the parametric models of
the normal, logistic, and hyperbolic distributions fail to track

TABLE I
METRICS VALUES ESTIMATED FOR RAMPING MAGNITUDE

Distribution Models
Logistic  Hyper. ksdensity TGMM

Metrics Normal

Correlation
coefficient
NRMSE
MaxAE
MAE
KSIPer
Standard dev.
4RMQE

0.88 0.84 0.89 0.96

0.98

TABLE III
METRICS VALUES ESTIMATED FOR RAMPING DURATION

Distribution Models

Metrics Logistic  Hyper. ksdensity TGMM

Normal

Correlation
coefficient
NRMSE
MaxAE
MAE
KSIPer
Standard dev.
4RMQE

0.95 0.94 0.98 0.99

0.99

TABLE IV
METRICS VALUES ESTIMATED FOR RAMPING RATE

Distribution Models

Metrics Logistic  Hyper. ksdensity TGMM

Normal

Correlation
coefficient
NRMSE
MaxAE
MAE
KSIPer
Standard dev.
4RMQE

0.92 0.95 0.98 0.99

0.99

the actual probability values very well, especially for the peak
values. However, the TGMM and the nonparametric model can
fit most probability values of the actual distribution. This is
specifically illustrated in Table III with the numerical metrics.
Both the TGMM and the nonparametric ksdensity model show
better performance than other distribution models, and the
TGMM provides equal-to-better performance comparing to the
nonparametric ksdensity model. It is noted that the TGMM
performs much better than the nonparametric model in terms
of the KSIPer indicator. It means the TGMM can show
more statistical similarity to the actual histogram distribution,
comparing to the nonparametric model.

The probability model of ramping rate is also a truncated
distribution due to the truncated ramping magnitude distri-
bution. The truncated PDF of ramping rate is illustrated in
Fig. 4b, where the truncation threshold is 3.54 MW/min. Eight
Gaussian components are found to optimally fit the actual
histogram distribution of ramping rate. It is shown that the
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Fig. 4. Probability distributions of ramping duration and rate using five
distribution models.

TGMM characterizes the peak of probability better than other
distributions. Table IV lists the metrics for the fitting perfor-
mance of different distribution models. Among all parametric
models, the TGMM performs better than the normal, logistic,
and hyperbolic models for all metrics. Comparing with the
nonparametric model, the TGMM can also provide an equal-
to-better performance in an analytical way.

Moreover, comparing to the ramping magnitude distribution
simulation in Section IV-C, it is shown that the TGMM
performs significantly well at fitting the probability and cu-
mulative distributions of ramping magnitude. For the ramping
duration and rate, the TGMM can provide much better per-
formance than unimodal models (i.e., the normal, logistic, and
hyperbolic), and equal-to-better performance comparing to the
nonparametric model, ksdensity.

V. CONCLUSION

This paper developed a truncated Gaussian mixture model
(TGMM) to characterize the probability and cumulative dis-
tributions of wind power ramping features. The TGMM was
analytically expressed as a parametric form. First, the non-
linear least square method with the Trust-Region algorithm
was adopted to estimate all the parameters of mixture compo-
nents. Second, the optimal number of mixture components was
adaptively solved by minimizing the Euclidean distance to the
actual probability distribution. Finally, the sign function was
utilized to truncate the original GMM distribution and obtain
the developed TGMM. Moreover, the cumulative distribution
function (CDF) of TGMM was analytically deduced. Numer-
ical simulations on the publically available wind power data
showed that:

(i) The TGMM distribution could optimally fit the actual
probability and cumulative distributions of ramping fea-
tures. All the evaluation metrics presented the best per-
formance of the TGMM comparing to both the unimodal
parametric models and the nonparametric model.

(ii)) Regarding the multimodal distribution of ramping mag-
nitude, the TGMM performed significantly better than
the normal, logistic, hyperbolic, and ksdensity models,
especially when multiple peaks present in the distribu-
tion.

(iii) Regarding the unimodal and asymmetric distributions
of ramping duration and rate, the TGMM provided an
equal-to-better performance comparing to the nonpara-
metric model, and much better performance than the
normal, logistic, and hyperbolic models.

In the future, this research can be further improved by:
(i) using the analytically developed TGMM in the chance-
constrained scheduling of power system operation models; and
(i1) applying to multiple wind farms on different geographic
locations.
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