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ABSTRACT
Effective short-term load forecasting (STLF) plays an

important role in demand-side management and power sys-
tem operations. In this paper, STLF with three aggregation
strategies are developed, which are information aggregation
(IA), model aggregation (MA), and hierarchy aggregation
(HA). The IA, MA, and HA strategies aggregate inputs,
models, and forecasts, respectively, at different stages in
the forecasting process. To verify the effectiveness of the
three aggregation STLF, a set of 10 models based on 4
machine learning algorithms, i.e., artificial neural network,
support vector machine, gradient boosting machine, and
random forest, are developed in each aggregation group to
predict 1-hour-ahead load. Case studies based on 2-year
of university campus data with 13 individual buildings
showed that: (a) STLF with three aggregation strategies
improves forecasting accuracy, compared with benchmarks
without aggregation; (b) STLF-IA consistently presents
superior behavior than STLF based on weather data and
STLF based on individual load data; (c) MA reduces the
occurrence of unsatisfactory single-algorithm STLF models,
therefore enhancing the STLF robustness; (d) STLF-HA
produces the most accurate forecasts in distinctive load
pattern scenarios due to calendar effects.
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1 INTRODUCTION
With the development of smart meter techniques, mas-

sive amounts of data enable load forecasting (LF) to have a
more critical impact on power system operations. In power
systems, decision-making problems on different time-scales
and various hierarchies rely heavily on accurate load fore-
casts [1]. According to time-scales, LF can be classified
into short-term LF (up to 1-week-ahead), medium-term LF
(from 1-week-ahead to 1-year-ahead), and long-term LF
(more than 1-year-ahead) [2, 3]. Based on power system
hierarchy, LF can be categorized into transmission side fore-
casting, distribution side forecasting, and demand side fore-
casting.

Short-term load forecasting (STLF) is adopted to assist
in a number of power system operations, such as ramp de-
tection, generation scheduling, load switching, energy trad-
ing, etc [4]. With the rapid development of artificial intelli-
gence (AI), various forecasting models have been developed
in the literature [5]. Lusis et al. [6] developed 1-day-ahead
(1DA) load forecasting models considering calendar effects
and found regression trees outperformed artificial neural
network (ANN) and support vector machine (SVM). Ah-
mad et al. [7] proposed an accurate and fast converging 1DA
load forecasting model based on mutual information and
ANN, which decreased the average execution time while en-
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hanced the forecasting accuracy compared with benchmark
methods. A more comprehensive review of AI methods for
STLF can be found in recent review papers [2, 8].

A power system has a hierarchical structure that in-
cludes levels of appliance, customer, feeder, substation, dis-
trict, region, and system. STLF at every hierarchical level is
valuable therefore has been researched in the recent decades.
For example, system-level STLF was improved by cluster-
ing customers based on similar load consumption patterns
in [9]. Fan et al. [10] developed region-level STLF technolo-
gies for a power system that covers large geographical area.
Factors that affect district-level STLF were analyzed and
a framework of district level STLF was proposed in [11].
Goude et al. [12] forecasted short-term and medium-term
load at substation-level for over 2,200 substations in the
French distribution network using semi-parametric additive
models, which achieved satisfying accuracy. Ledva et al. [13]
developed a model for feeder-level load forecasting based on
an online learning algorithm and obtained accurate disag-
gregated forecasts. To improve the customer-level STLF,
Yu et al. [14] added sparse coding in the ridge regression
model and obtained a 10% improvement. Appliance-level
STLF was generated by a type of hidden Markov model
from smart meter data in [15].

To achieve better forecasting performance, a number of
methodologies have been reported in the literature, which
could be generally divided into three categories. Research
in the first category focuses on integrating more informative
and better-organized data to enhance the forecasting accu-
racy, which is defined as information aggregation (IA) in
this paper. For example, residents’ life patterns were used
to improve the customer-level STLF in [16]. The second
category contains methodologies combining forecasts from
individual models [17], which is defined as model aggre-
gation (MA). For example, Borges et al. [18] developed a
model combining independent forecasts to improve STLF.
The third category of research is called hierarchical fore-
casting, which we define as hierarchy aggregation (HA).
Forecasts of lower-level individuals are aggregated by a cer-
tain strategy to improve forecasting accuracy of upper-level
individuals in the power system hierarchy in this category.
For example, a hierarchical forecasting method was devel-
oped in [19] for STLF, which was more efficient in terms of
the sparsity of the adjustments and the prediction accuracy.
All these three kinds of aggregation forecasting methodolo-
gies have been proven to enhance the accuracy. However,
the superiority of the three aggregation forecasting strate-
gies has not been studied in the literature.

In an attempt to comprehensively compare the aggrega-
tion strategies at different stages in the forecasting process,
STLF models with IA, MA, and HA are developed to ag-
gregate inputs, models, and forecasts, respectively. A set of

10 machine learning models based on 4 AI algorithms are
built to ensure the generality of this study. Performance of
models in different groups are compared to show the pros
and cons of the three aggregation strategies. The remainder
of this paper is organized as follows. STLF models with IA,
MA, and HA are developed in Section 2. Section 3 describes
the data for case studies, benchmarks, and evaluation met-
rics. In Section 4, results of case studies are analyzed and
compared. Section 5 concludes the paper.

2 SHORT-TERM LOAD FORECASTING METHODOLO-
GIES WITH DIFFERENT AGGREGATION STRATE-
GIES
Three types of aggregation strategy (IA, MA, and HA)

are described and formularized in this section. The three
aggregation strategies aggregate distinct objects at different
stages in the forecasting process, as illustrated in Fig. 1.

2.1 Information Aggregation (IA)
The first generation of STLF only depends on the load

time series itself, which is called time series approach. Ex-
ternal information, such as meteorological data and calen-
dar data, is integrated into STLF. With the development
of advanced metering infrastructure, smart meter data pro-
vides an opportunity to further improve STLF accuracy. In
this paper, STLF with three sets of inputs is studied, which
are: (i) weather data (Xw) and target variable (load at the
top-level, which is denoted as Xs) data, (ii) individual load
data (load data at bottom-level, which is denoted as Xl)
and target variable data, (iii) weather data, target variable
data, and individual load data. The STLF with IA (STLF-
IA) conducts aggregation at the first step in the forecasting
process, as illustrated in Fig. 1(a). STLF-IA is formularized
as follows:

Ŷ I = fij(XD) (1)

XD = XD =
[
Xs

n×1 Xw
n×dw

Xl
n×dl

]
D (2)

where n is the data length, dw and dl are the dimensions of
weather data and individual load data, respectively. fij(∗)
is the model using the ith AI algorithm with kernel j. Ŷ I

is a forecasting vector produced by STLF-IA. X is a data
matrix with all variables, and XD is a selected input ma-
trix. D is a decision vector that has three forms in terms
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ŶM

ANN SVM GBM RF

Kernel 
Trick

Model fijModel fijModel f11Model f11 Model f1jModel f1j

Blending Algorithm
�

Blending Algorithm
�

XwXw XsXs

(b) Model aggregation

Hierarchy Aggregation (HA)

Which 
Individual?

fijfij
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FIGURE 1. Frameworks of STLF with three different aggregation strategies

of the three IA scenarios:

D(1+dw+dl)×(1+dw) =
[
I(1+dw) |

−→0 dl×(1+dw)

]T
(3a)

D(1+dw+dl)×(1+dl) =

1 −→0 (1+dw)×dl
−→0 dw×1−→0 dl×1 Idl

 (3b)

D(1+dw+dl)×(1+dw+dl) = I(1+dw+dl)×(1+dw+dl) (3c)

where I and−→0 are an identity matrix and a matrix of zeros,
respectively.

2.2 Model Aggregation (MA)
Model Aggregation (MA) carries out aggregation at the

model-building stage. MA is expected to take advantage
of learning power from different algorithms. In the liter-
ature, averaging forecasts generated by several models is
the first MA strategy, which is followed and advanced by
a linear combination of models. Latest MA strategies seek
to determine the weights of individual model forecasts dy-
namically by using AI algorithms, such as multi-model fore-
casting framework (MMFF) as shown in Fig. 1(b) [20, 21].
MMFF is a two-layer machine learning based method for
short-term forecasting, which can be described as [17]:

Ỹ ij = fij(Xw) (4)

Ŷ ij = Φij(Ỹ ) (5)

where Ỹ ij is a forecast vector provided by the model fij ,
Xw is a input vector to the first-layer models, Ỹ is a com-
bination of the first-layer forecast vector, and Ŷ ij is the
final forecast vector by a blending model Φij(∗) in the sec-
ond layer. Four AI algorithms with multiple kernels (shown
as kernel trick box in Fig. 1(b)) are adopted in this paper,
which are ANN, SVM, gradient boosting machine (GBM),
and random forest (RF). Please note that all the models
with various machine learning algorithms and kernels are
used to construct the first layer, and only one of the models
is selected as the blending algorithm in the MA framework.

2.3 Hierarchy Aggregation (HA)
Load data is hierarchically aggregated based on the

electric connections and geographical distributions. STLF-
HA forecasts load of bottom-level individuals (denoted as
Ŷ i,H in Fig. 4) by using the weather data and specific in-
dividual load data (denoted as Xi,H in Fig. 4) and then
aggregates to the top-level load forecasts. For example, in
a three-level hierarchy shown in Fig. 2, forecasting vectors
at the bottom-level (level 3) are aggregated to the upper-
level (level 2) until reaching the top-level (level 1). Num-
bers before the slash in subscripts indicate the upper-level
component to which the lower-level individuals belong, and
numbers after the slash in subscripts are used to identify
individuals within the same aggregation group. For exam-
ple, Ŷ 1/1,H is a forecasting vector at the bottom-level (level
3), which is aggregated with another individual, Ŷ 1/2,H , in
the same aggregation group to the upper-level component
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Ŷ 1,H (which could be expressed as Ŷ i,H =
∑

j Ŷ i/j,H).
This process can be expressed using matrix notation Ŷ =
S
[
Ŷ i/j,H

]
, which is further expanded as [22]:



Ŷ H

Ŷ 1,H

Ŷ 2,H

Ŷ 1/1,H

Ŷ 1/2,H

Ŷ 2/1,H

Ŷ 2/2,H


=


1 1 1 1
1 1 0 0
0 0 1 1

I4




Ŷ 1/1,H

Ŷ 1/2,H

Ŷ 2/1,H

Ŷ 2/2,H

 (6)

where Ŷ is a forecasting matrix containing all elements in
the hierarchy, S is a summing matrix, and I4 is a 4× 4
identity matrix. Please note that in this paper, the objective
is to forecast load at the top-level, Ŷ H .

ŶHŶH

Ŷ1,HŶ1,H Ŷ2,HŶ2,H

Level 1

Level 2

Level 3 Ŷ1/1,HŶ1/1,H Ŷ1/2,HŶ1/2,H Ŷ2/1,HŶ2/1,H Ŷ2/2,HŶ2/2,H

FIGURE 2. A three-layer hierarchical structure

3 EXPERIMENTAL SETUP
In this section, experimental setups for case studies

are described including data description and pre-analysis,
benchmarks and comparison settings, and evaluation met-
rics. While the methods can be applied to different fore-
casting horizons, the forecasting time horizon in this paper
is 1-hour-ahead (1HA). 1HA load forecasting plays an im-
portant role in power system operations, such as helping
decision-making of real-time dispatch and energy storage
charging/discharging. 1HA load forecasting is also flexible
and scalable to generate longer-term forecasts in a recursive
manner.

3.1 Data Description and Pre-analysis
In this paper, hourly load data of 13 buildings (se-

lected based on the data availability) at The University of
Texas at Dallas (UTD) was used for case studies. The rea-
sons to research with university campus load are threefold:
(a) demand-side load forecasting is more challenging than
upper-level load forecasting in power system hierarchy, (b)
large electricity consumers, such as universities, are more
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FIGURE 3. UTD campus and building load profile for seven
days in spring

critical in demand-side management, (c) a university cam-
pus has buildings with diverse load patterns that are inter-
esting to explore. In addition, hourly weather information
was retrieved from the National Solar Radiation Database
(NSRDB) 1. The weather features in NSRDB dataset in-
clude air temperature, relative humidity, air pressure, wind
speed, wind direction, direct normal irradiance, global hor-
izontal irradiance, and diffuse horizontal irradiance. Cal-
endar features, i.e., hour of the day, day of the week, and
month of the year, were extracted and included in the case
studies. Both UTD load and NSRDB weather data have
two-year length, spanning from January 1st 2014 to De-
cember 31st 2015.

Figure 3 shows load profiles of the total 13 buildings
(which is the top-level object in HA) and each individual
(which is the bottom-level individuals in HA). It is observed
that the load profiles have evident diurnal patterns. This
is also proved by a time series analysis that shows all the
load time series have the periodicity of 24 (1 day) [21, 23].
Moreover, load patterns of the 13 buildings are different,
which could be further validated by load statistics shown in
Fig. 4. Among the 13 buildings, B1 is a parking structure
with photovoltaic panels, which may have negative netload
during daytime, as shown in Fig. 4. B2 is an administration
building that has large load and variance from 8am to 5pm.
B3 is a library that has the largest and most stable load
among all buildings. B4 is a lecture hall, which has rela-
tively small but chaotic load. B5 - B9 are five classroom/lab
buildings with similar patterns. B10 - B13 are four student
residence halls that have diverse load patterns in contrast
to other buildings. Compared to individual buildings, the
whole campus load is relatively smoother.

3.2 Benchmarks and Comparison Settings
In this paper, forecasting methods with three kinds of

aggregation strategies are investigated and compared, which
are IA, MA, and HA. First, STLF-IA is compared with

1https://nsrdb.nrel.gov
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FIGURE 4. Hourly statistics of buildings’ and whole campus’
load. The line in the box is the median. The interquartile range
box represents the middle 50% of the data. The upper and
lower bounds are maximum and minimum values of the data,
respectively, excluding the outliers. The outliers are data outside
two and half times of the interquartile range

STLF using weather data (STLF-W) and STLF using indi-
vidual buildings’ load data (STLF-L). Note that the histor-
ical whole campus load data is included in STLF-IA, STLF-
W, and STLF-L. The second comparison is made between

STLF-MA and STLF with single-algorithm machine learn-
ing models (STLF-S), both of which use weather data and
the historical campus load data (so STLF-S is the same as
STLF-W). At last, STLF-HA is compared with STLF-IA,
STLF-MA, and STLF-W to show the effectiveness of aggre-
gation strategies in STLF.

TABLE 1. Machine learning forecasting models with different
kernel/distribution functions/training algorithms

Algorithm Model Function/Algorithm

ANN
M1 Resilient back-propagation (BP)

M2 Momentum-enhanced BP

M3 Standard BP

SVM
M4 Linear kernel

M5 Polynomial kernel

M6 Radial basis function kernel

GBM
M7 Squared loss

M8 Laplace loss

M9 T-distribution loss
RF M10 CART aggregation

The forecasting models (fij in Fig. 1) adopted are
tabulated in Table 1, including four machine learning al-
gorithms with different kernel functions/distribution func-
tions/training algorithms [21]. It is important to note that
all these models are used in the first-layer and only one of
them is used in the second-layer in MA. The training data
was randomly selected from each month, and the remaining
data was used for testing. The ratio of training samples to
testing samples was 4:1. The experiment was carried out
on a laptop with an Intel Core i7 2.6 GHz processor and a
16.0 GB RAM.

3.3 Forecasting Accuracy Assessment
To assess the forecasting accuracy, four evaluation met-

rics are used, which are normalized mean absolute er-
ror (nMAE), mean absolute percentage error (MAPE),
nMAE improvement (ImpA), and MAPE improvement
(ImpP ). The mathematical expressions of the four metrics
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are respectively shown as [24, 25, 26]:

nMAE = 1
n

n∑
i=1

∣∣∣∣ ŷi−yi

ymax

∣∣∣∣×100% (7)

MAPE = 1
n

n∑
i=1

∣∣∣∣ ŷi−yi

yi

∣∣∣∣×100% (8)

ImpA
ab =

nMAEMb
−nMAEMa

nMAEMb

(9)

ImpP
ab =

MAPEMb
−MAPEMa

MAPEMb

(10)

where ŷ, y, and ymax are the forecast value, actual value,
and maximum actual value, respectively; i is a sample index
and n is the number of samples; M is the model name;
the parameters of a and b are group indices to which a
model belongs. Specifically, a and b could be selected from
I, M, H, W, L, and S, which represent the groups of STLF-
IA, STLF-MA, STLF-HA, STLF-W, STLF-L, and STLF-S,
respectively. It is important to note that both ImpA and
ImpP are calculated based on the same model M, because
the focus of this paper is to compare STLF with different
aggregation strategies, instead of comparing STLF using
different machine learning models.

4 RESULTS AND DISCUSSION
Tables 2 and 3 list the four evaluation metrics of STLF

benchmarks and STLF with three aggregation strategies.
Comparisons are made and discussed from different per-
spectives.

The effectiveness of STLF-IA is evaluated by the first
six columns in Table 2 and the first four rows in Table 3.
It is found that STLF-IA models reduce forecasting errors
significantly and consistently, compared with STLF-W and
STLF-L models. The accuracy improvements are more ev-
ident by aggregating weather information data into fore-
casting models. Regarding to different models, M3 and M9
(which are an ANN and a GBM forecasting model, respec-
tively) are enhanced the most by IA. It is concluded that IA
improves STLF forecasting accuracy significantly and con-
sistently, especially when aggregating weather information.

MA forecasting evaluation results are listed in the 7th
and 8th columns in Table 2. The comparisons of MA with
STLF-S are shown in the 5th and 6th rows in Table 3. It
is found that the performance of relatively less-accurate
STLF-S models are improved more significantly by MA,
such as M7 and M8. However, the best two models in STLF-
S, i.e., M9 and M10, deteriorate in STLF-MA, which is due

to the unsatisfactory forecasts (Ỹ ) from part of the first-
layer models. Regarding to models using different machine
learning algorithms, all the ANN models (i.e., M1 - M3) and
SVM with linear and polynomial kernels (i.e., M4 and M5)
perform relatively better in STLF-MA. Among the four dif-
ferent ensemble learning algorithm models (M7 - M10), two
of them (i.e., M7 and M8) have increasing accuracies while
the other two (i.e., M9 and M10) have decreasing accura-
cies by using the MA strategy. Even though three mod-
els (i.e., M6, M9, and M10) produce worse forecasts, their
forecasting accuracies are still competitive. Therefore, it is
concluded that STLF-MA enhances STLF robustness by im-
proving the unsatisfactory single-algorithm machine learn-
ing models.
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FIGURE 5. UTD campus and building forecasting bias errors
(BEs) [kW] for STLF-HA

The forecasting errors of STLF-HA models are listed in
the last two columns in Table 2 and their comparisons with
STLF-S, STLF-IA, and STLF-MA are shown in the last six
rows in Table 3. As opposed to STLF-S, the HA strategy
improves STLF stably by up to 21.57% and 22.47% based
on ImpA and ImpP , respectively. Most STLF-HA models
outperform their counterparts in STLF-IA and STLF-MA
groups, including ANN, GBM, and RF models. However,
STLF-HA with SVM models (M4 - M6) is beat by the same
models in the STLF-IA group. Moreover, four models (M4,
M5, M7, and M8) produce worse forecasts with the HA
strategy than those with MA. The forecasting accuracy de-
terioration of STLF-HA is due to the individual forecasting
error accumulation effect, which is illustrated in Fig. 5. Two
contrasts shown in Fig. 5 are STLF-HA with M5 and M10,
which are the worst and the best STLF-HA models, re-
spectively. It is observed that M10 generates forecasts with
smaller bias for each building than M5, such as B5 and B9.
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TABLE 2. Forecasting nMAE [%] and MAP E [%] of different STLF groups

STLF-W/STLF-S STLF-L STLF-IA STLF-MA STLF-HA
Model

nMAE MAPE nMAE MAPE nMAE MAPE nMAE MAPE nMAE MAPE

M1 1.32 2.16 1.60 2.63 1.24 2.04 1.19 1.91 1.11 1.83

M2 1.34 2.20 1.57 2.56 1.28 2.11 1.17 1.89 1.11 1.83

M3 1.52 2.53 1.58 2.58 1.25 2.07 1.28 2.03 1.11 1.83

M4 1.45 2.34 1.57 2.54 1.31 2.12 1.11 1.79 1.36 2.18

M5 1.83 3.01 1.72 2.82 1.53 2.50 1.27 2.06 1.58 2.58

M6 1.34 2.17 1.43 2.34 1.18 1.94 1.39 2.30 1.20 1.97

M7 1.64 2.65 1.82 2.96 1.64 2.65 1.18 1.93 1.46 2.37

M8 1.67 2.71 1.83 2.96 1.67 2.70 1.23 2.03 1.48 2.38

M9 1.07 1.73 1.88 3.05 1.05 1.71 1.20 1.95 0.89 1.46

M10 1.06 1.74 1.30 2.14 1.06 1.74 1.11 1.81 0.83 1.35

Note: The forecasting nMAE and MAP E of the persistence method are 2.01% and 3.21%, respectively. Bold values indicate the best
results within the same group, while bold navy blue values indicate best results among all models.

TABLE 3. Forecasting improvements according to ImpA [%] and ImpP [%] of different comparisons

Group M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

STLF-IA

ImpA
IW 5.83 4.74 18.00 9.69 16.03 11.51 0.00 0.03 1.61 0.00

ImpP
IW 5.73 3.89 18.25 9.49 16.84 10.67 0.23 0.23 1.08 0.28

ImpA
IL 22.35 18.41 21.01 16.63 10.94 17.12 10.15 8.62 22.96 18.05

ImpP
IL 22.65 17.48 19.99 16.68 11.33 17.16 10.49 8.67 23.49 18.61

STLF-MA
ImpA

MS 10.03 12.62 16.16 39.52 12.33 -4.05 27.67 26.49 -12.06 -4.68

ImpP
MS 11.79 13.98 19.57 40.48 11.83 -6.04 27.14 24.89 -13.17 -3.93

STLF-HA

ImpA
HS 15.97 17.48 27.10 6.25 13.28 10.05 10.95 11.38 16.54 21.57

ImpP
HS 15.13 16.80 27.68 6.76 14.25 9.31 10.85 11.87 15.35 22.47

ImpA
HI 10.77 13.37 11.09 -3.81 -3.27 -1.66 10.96 11.35 15.18 21.84

ImpP
HI 9.97 13.43 11.54 -3.01 -3.11 -1.52 10.64 11.66 14.43 22.25

ImpA
HM 6.60 5.56 13.05 -6.94 -43.38 13.55 -23.12 -20.56 25.53 25.07

ImpP
HM 11.99 10.42 12.91 -3.19 -32.92 33.66 -11.30 -7.72 31.46 28.34

Note: Bold values indicate the most improvements within the same comparison, while brick red values indicate accuracy deteriorations
in comparisons.

Moreover, the individual building load forecasting errors of
M5 accumulate to larger values in contrast with those of
M10, which is illustrated by the darker color of the whole
campus’ load forecasting in Fig. 5. Even though there are
some unsatisfactory models compared with other two aggre-

gation strategies, the overall improvement of STLF-HA is
significant. Additionally, STLF-HA produces the most ac-
curate forecasts (0.83% nMAE and 1.35% MAPE) among
all models.

The best model in each group is picked out to make
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further comparisons, which are M9 in the STLF-W/STLF-
S group (M9W ), M10 in the STLF-L group (M10L), M9
in the STLF-IA group (M9IA), M4 in the STLF-MA
group (M4MA), and M10 in the STLF-HA group (M10HA).

To characterize forecasting performance of the five mod-
els, forecasting errors with respect to calendar units (i.e.,
month, day of the week, and hour of the day) are shown
in Figs. 6 - 8. One interesting finding is that the calen-
dar effect has considerable impacts on forecasting errors.
For example, errors in January, August, and September are
much larger than those in other months. This is possibly
due to the load pattern variation caused by university holi-
days. The calendar effect on forecasting errors is even more
evident by hour of the day, as shown in Fig. 8. Forecasts de-
viate the most from 6:00 to 8:00, during which load patterns
change more significantly. However, no significant calendar
effect is found on forecasting errors by day of the week, as
shown in Fig. 7. This is possibly due to the diverse building
load of the university, for example, classroom and library
buildings have higher load during weekdays and residential
halls have higher load during weekends. Even though the
load pattern varies significantly, it is observed that M10HA

presents superior performance in every month, every day of
the week, and at every hour of the day than the best models
in other groups.

5 CONCLUSION
This paper investigated and compared short-term load

forecasting (STLF) with different aggregation strategies, in-
cluding information aggregation (IA), model aggregation
(MA), and hierarchy aggregation (HA). The three aggre-
gation strategies integrated distinct objectives at different
stages in the forecasting process. STLF-IA aggregates more
informative and better-organized data. STLF-MA aggre-
gates forecasts of different machine learning models non-
linearly and dynamically. STLF-HA aggregates lower-level
forecasts into higher level forecasts in the hierarchical struc-
ture. Case studies based on 2-year of university campus
hourly load and weather data with 13 individual buildings
showed that:

1) STLF with three aggregation strategies improved fore-
casting accuracy, compared with benchmarks without
aggregation.

2) STLF-IA presented superior behavior than STLF with
weather data and STLF with individual load data con-
sistently.

3) MA improved the accuracy of unsatisfactory single-
algorithm STLF models, therefore enhancing the STLF
robustness.

4) STLF-HA produced the most accurate forecasts in dis-
tinctive load pattern scenarios caused by calendar ef-
fects.

Future work includes exploring different methods in each
aggregation strategy, and investigating the flexibility and
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scalability of this 1HA STLF to longer-term load forecasting
and other power system hierarchical structures.
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