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model (Liu et al. . The most popular machine learning algorithms are artificial
neural networks (ANNs) (Li and Shi , support vector machine (SVM) (Chen
and Yu , random forest (RF) (Feng et al. , and gradient boosting
machine (GBM) (Nagy et al. . Compared with shallow machine learning
models, deep learning models are able to capture the hidden invariant structures in
the wind speed. The deep belief network algorithm (Wang et al. and the deep
convolutional neural network (Wang et al are also employed in the short-term
wind forecasting.

Among many wind integration challenges, severe fluctuation incidents with large
magnitudes and short durations, so-called ramping events, are a major concern
of power system operators. Wind power ramping events (WPREs) are usually
caused by complicated physical processes and atmospheric phenomena, such as
thunderstorms, wind gusts, cyclones, and low-level jets (Freedman et al.

The research on WPRESs can be generally classified into three directions: WPRE
detection, WPRE forecasting, and WPRE application. The WPRE detection uses
a mathematical algorithm and wind power ramping definitions to extract all the
wind power ramps from actual or forecasted wind power data. The WPRE detection
method can be directly applied to historical measured wind power data to extract
all historical ramping events. Statistical and machine learning methods can then be
developed based on the historical ramping events to directly forecast WPREs. The
accuracy of WPRE forecasting highly depends on the accuracy of WPRE detection.

This chapter reviews and discusses different types of models for short-term wind
forecasting and ramp forecasting, including both individual and ensemble machine
learning  dels and a recently developed optimized swinging door algorithm.

11.2 Wind orecasting

The most popular short-term wind forecasting models include ANN, SVM, GBM,
and ... machine learning models, which provide acc e 1sts with relatic  y
low computational cost. The ensemble of individual machine learning models is
another efficient way to  prove the wind forecasting accuracy. Both individual and
hybrid machine learning models are reviewed and discussed in this section.

11.2.1 Single Machine Learning Algorithm Models

ANN is a popular algorithm in speech recognition, target tracking, signal analysis,
and nonlinear regression problems (such as time series forecasting). ANN mimics
the structure of the human brain that consists interconnected neurons. Each neuron
1s a weighted sum of its inputs and is connected to the neurons in the next layer. The
ANN architecture contains one input layer, one or more hidden layer(s), and one
output layer. The configuration of the ANN model needs to be well designed to avoid



11 Wind Power and Ramp Forecasting for Grid Integration 301

over-fitting issues. ANN can be classified into different types based on different
activation functions and learning algorithms. Deep learning is also a configuration
of ANN. The mathematical description of the ANN is expressed as:

N
yi(n) =T Y"wi(jn’n_l)yj("_l) + 6 (11.1H

where i is a neuron of the nth layer, w;; is the weight from the neuron j 1 the layer
(n — 1) to the neuron i in layer n, and 9§‘ is the threshold of the neuron 1in layer n.
SVM is originally a supervised linear classifier proposed by Vapnik

As one of the most popular classification methods, SVM has been applied
in text categorization, image classification, and other recognition tasks. When
dealing with linearly ins¢ irable data, nonlinear mapping-based kernel methods,
K(x) : R" — R™, are used to map the nonlinear data into the high-dimensional
feature space. Then, a linear hyperplane is found by maximizing the distance
between support vectors and the hyperplane. The SVM algorithm can also be
applied in regression problems, which is called support vector regression (SVR).
The performance of the SVR was reported to be better than other algorithms (e.g.,
ANN) in the literature. However, the compute and storage requirements increase
significantly with the data dimension. The hyperplane function, also called the SVR
function, is described as (Feng et al

f(x) =w K(x)+b (11.2)

where w and b are variables solved by minimizing the empirical risk, which is given
by:

] n
R(D=—) 0@ fx) (11.3)
i=1

where O, (y;, f) is the e-insensitive loss function, expressed as:

If =yl —&ifllf—yll>e

11.4
0, otherwise ( )

O (y;, D) = {

Then the optimal hyperplane is found by solving the inequality-constrained
quadratic optimization problem.

GBM is a highly customizable learning algorithm wi  y used in the regression
and classification fields. A GBM model relies on the com™ ~ tion of “weak learners”
to create an accurate learner therefore, is able to generate both deterministic and
probabilistic results in the time series forecasting. he combination is achieved by
adding the weighted base learner to the previous model iteratively (Kaur et al


















11 Wind Power and Ramp Forecasting for Grid Integration 307

14 Data
;v /o

W20%

W 30% 3
B 40%

B 50%

B RnoL

-t
N

-t
o

o]

Wind Speed (m/s)
[

0 20 40 60 80 100 120 140 160 180 200
Samples

Fig. 11.4 Deterministic forecasting from the MMF_FS with confidence intervals at BND

wind turbine starting up/shutting down in the response to fluctuations; (iv) helping
wind farm operators, especially offshore wind farm operators, to better schedule
wind turbine maintenance; and (v) reducing curtailment of the wind generation.
Overall, the improved wind forecasts could be helpful in reducing the operation
costs and increasing the system reliability. The forecasts can also be used to
determine the charge and discharge schedule of energy storage in a micro-grid
system with distributed wind generators and energy storage.

11.3 Wind Power Ramp Event Detection

Wind power ramps significantly affect the regulation of traditional generators for
better managing and dispatching the wind power. .uerefore, better detecting and
forecasting ramp events are very helpful for power system operators to make
operational decisions. Regarding wind power ramp detection, Sevlian and Rajagopal

proposed an optimal detection technique to identify all WPREs by
defining a family of scoring functions associat y ramping rules and using
recursive dynamic programming. Zhang et al. dopted the swinging door
algorithm (SDA) to extract ramp events from actual and forecasted wind power time
series. Cui et al. developed an optimized swinging door algorithm (OpSDA)
to improve ramp detection performance, by segre ~ting wind power time series with
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the SDA and merging all ramps with a dynamic programming algorithm. Kamath
-used feature selection techniques from data mining to determine ramps
in wind power generation.

A number of statistical and machine learning methods have been developed in
the literature to forecast wind power ramps at multiple forecasting horizons. For
example, Cui et al. modeled the wind power generation as a stochastic
process by using a neural network and a genetic algorithm and then forecasted the
probability distributions of three WPRE properties. Cutler et al. compared
the efficiency of the Wind Power Prediction Tool (WPPT) and the Mesoscale
Limited Area Prediction System (MesoLAPS) for WPRE forecasting. Zareipour
et al. mined historical data and predicted the class of WPREs using support
vecto ines. Greaves et al. calculated temporal uncertainty to provide
an indication of the likely timing of WPRE:s.

This chapter reviews and discusses a recently developed wind power ramp
detection method, the optimized swinging door algorithm (OpSDA). The OpSDA
(Cuietal is a two-stage process method. The first stage is a data segregation
process based on SDA. SDA is used to segregate wind power signals according to
the user-specified definition of a ramp. ..1e second stage is an optimization process
based on a dynamic programming algorithm. Dynamic programming is used to
merge adjacent segments that are segregated with the same ramp changing direction
in the first stage.

11.3.1 Swinging Door Algorithm (SDA)

The SDA algorithm (Bristol Ban is based on the concept of a “swinging
door” with a “hinge” or “pivot point” whenever the next point in the time series
causes any intermediate point to fall outside the area partitioned by the up and down
segment bounds. The segment bounds are defined by the door width, ¢, which
is the only tunab ps ter in the SDA. More detai ptions of the SDA
can be found in Florita et al. and Makarov et . After segregating
the wind power signal by SDA, wind power ramping events (WPREs) are extracted
according to the user-specified definition of a significant ramp.

11.3.2 Optimized Swinging Door Algorithm (OpSDA)

The objective of the optimization in the SDA 1s to minimize the number of individual
ramps whereas still approximating the wind power signal as a ramp. Therefore,
adjacent segments that have the same slope (e.g., up-ramps) can be merged into
one segment. Toward this end, an optimization process is applied to the original
segments (from the SDA) using a dynamic programming algorithm. Dynamic
programming is a method for solving a complex problem by breaking it down into
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detecting up-ramps, note that up-ramp detection is taken as an example to illustrate
the specific detecting process.

When optimizing ramps, one of the more interesting findings was the presence
of small ramps (non-WPREs), which are termed “bumps” in this paper and set as
B(1, j) in the formulations below. The key characteristic of a bump is e changing
direction (e.g., a down-bump between two up-ramps or an up-bump between two
down-ramps), which makes the iteration of the dynamic programming to break
abruptly due to the strict super-additivity property in Eq. . When a bump
occurs, it breaks one integrated WPRE into two discrete ramps, which affects the
performance of WPRE detection. To address this issue, the dynamic programming
process is improved so that it can also merge ramps and bumps with different
changing directions. If B(i, j) conforms to the threshold of bump definitions, B(i,
) 1s assigned to be 1; otherwise, B(i, j) is assigned to be 0. During the recursion,
bumps are also considered and merged into the WPRE.

11.3.3 Experimental Results

In this section, the OpSDA is applied to two case studies. We present various
statistics to analyze the detected WPREs and parameterize the WPRE process. The
total wind power generation is taken from a balancing area in the northwestern
region of the United States. The dataset contains 7,884,012 samples sampled every
4 s spanning from October 1, 2012, to September 30, 2013. In this case, we use
the maximum power output, 123 MW, as the base benchmark capacity. The 4-s
dataset is averaged to obtain wind power data at different timescales: 1-min, 5-
min, 15-min, 30-min, 1-h, and 2-h. A total of 2,089 ramps within 1-min timescale
(1,941 ramps within 5-min timescale, 1,701 ramps within 15-min timescale, 1,340
ramps within 30-min timescale, 1,009 ramps within 1-h timescale, and 705 ramps
within 2-h timescale) are detected and utilized to generate the probability density

dis  Hut Fig the u istics and .onal counts
of each timescale over the course of a whole year.
Figure indicates that along with the increasing timescale (from 1-min to 2-

h), for ramp durations, the peak duration value and probability density rise from
50 min with 0.03—400 min with 0.17. For the distribution of ramp change rate
in Fig. the peak change rate value decreases from 0.004 p.u./min to 0.001
p-u./min, whereas the corresponding probability density rises from 80 to 820. For
the distribution of ramp magnitude in Fig. the peak magnitude value rises
from 0.21 p.u. to 0.33 p.u., whereas the corresponding probability density decreases
from 9 to 2. Figure illustrates that the seasonal ramp counts also decrease
along with the increasing timescale in each season. There are relatively fewer ramp
events occurring in winter and spring, whereas there are relatively more ramp events
occurring in summer and fall. This can be partially attributed to the higher wind
generation in summer and fall as shown ir . .g. It is seen from Figs. ind

that seasonal ramp counts increase along with the increasing wind generation.
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Fig. 11.5 Probability density distributions of ramp features of six timescales (1-min, 5-min, 15-

min, 30-min, 1-h, and 2-1

and seasonal ramp counts over a whole year for Case II. (a) Ramp

duration. (b) Ramp change rate. (¢) Ramp magnitude. (d) Seasonal ramp counts. (e) Seasonal

wind generation
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Figure exhibits an example of multi-timescale wind power ramping product
(WPRP) detection. The rectangle represents the ramping product that can be
provided by wind power at the current time. The first three blue rectar es consist
of one up-WPRP with the ramping start time t1 and ramping end time t4 in the
1-h timescale. The up-WPRP in the 15-minute-timescale model starts at time t2

1 + 15 min) and terminates at time t3 (=t4-15 min). I >reover, the ramping
capacity in the 15-min-timescale model is much less than that in the 1-h-timescale
model, according to the areas of blue and yellow rectangles. The same phenomenon
can also be found in the down-WPRP (time t5 t7 and time t6 t7). Under this
circumstance, it is essential to characterize and consider WPRP features in a multi-
timescale fashion.

11.5 Conclusions

In this chapter, several widely used models for the short-term wind forecasting and
ramp forecasting were reviewed and discussed. The 1-h-ahead wind power forecasts
at over 126,000 wind sites in the United States were generated using a gradient
boosting machine model. We also found that the ensemble machine learning models
have improved the wind fore  ting accuracy, cc = nared with the single-algorithm
models. A recently developed wind power ramp detection method was introduced in
this chapter. The results showed that the OpSDA successfully identified wind power
ramps and performed significantly better than the SDA. The accurate wind power
forecasts and ramp detection could benefit power system operators, energy traders,
and wind plant owners.
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