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Wind Power and Ramp Forecasting 
for Grid Integration 

Cong Feng and Jie Zhang 

11.1 Introduction 

Check for 
updates 

Wind energy is a sustainable alternative to the conventional energy in relieving 
global warming and fuel energy shortage. Notable progress has been made in 
increasing the wind energy capacity. However, the uncertain and variable charac­
teristics of the wind resource present challenges to wind integration, especially 
at large penetrations. Accurately forecasting the wind power generation and the 
extreme wind power changes would greatly help power system operators make 
better operation schedules, thereby improving the system economic and reliability 
performance. 

Wind forecasting consists of wind speed forecasting and wind power forecasting 
(Ren et al. 2015). Significant improvements of the wind forecasting have been 
achieved by developing various forecasting models in the past decades. The wind 
forecasting models can be classified by different criteria. Based on the algorithm 
principles, they are generally divided into physical models, statistical models, 
and hybrid physical and statistical models (Feng et al. 2017a). Based on the 
forecasting horizons, wind forecasting models are grouped into very short-term 
models (intra-hour), short-term models (1-h to 6-h-ahead), midterm models (6-h 
to I-week-ahead), and long-term models (over 1 week) (Chang 2014). 

Different types of statistical models have been applied in the wind forecasting, 
including conventional time series models, machine learning models, and deep 
learning models. Conventional time series models include the autoregressive (AR) 
model (Poggi et al. 2003), the autoregressive moving average (ARMA) model 
(Erdem and Shi 2011 ), and the autoregressive integrated moving average (ARIMA) 
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model (Liu et al. 2015). The most popular machine learning algorithms are artificial 
neural networks (ANNs) (Li and Shi 2010), support vector machine (SVM) (Chen 
and Yu 2014 ), random forest (RF) (Feng et al. 2017 a), and gradient boosting 
machine (GBM) (Nagy et al. 2016). Compared with shallow machine learning 
models, deep learning models are able to capture the hidden invariant structures in 
the wind speed. The deep belief network algorithm (Wang et al. 2016) and the deep 
convolutional neural network (Wang et al. 2017) are also employed in the short-term 
wind forecasting. 

Among many wind integration challenges, severe fluctuation incidents with large 
magnitudes and short durations, so-called ramping events, are a major concern 
of power system operators. Wind power ramping events (WPREs) are usually 
caused by complicated physical processes and atmospheric phenomena, such as 
thunderstorms, wind gusts, cyclones, and low-level jets (Freedman et al. 2008). 
The research on WPREs can be generally classified into three directions: WPRE 
detection, WPRE forecasting, and WPRE application. The WPRE detection uses 
a mathematical algorithm and wind power ramping definitions to extract all the 
wind power ramps from actual or forecasted wind power data. The WPRE detection 
method can be directly applied to historical measured wind power data to extract 
all historical ramping events. Statistical and machine learning methods can then be 
developed based on the historical ramping events to directly forecast WPREs. The 
accuracy of WPRE forecasting highly depends on the accuracy of WPRE detection. 

This chapter reviews and discusses different types of models for short-term wind 
forecasting and ramp forecasting, including both individual and ensemble machine 
learning models and a recently developed optimized swinging door algorithm. 

11.2 Wind Forecasting 

The most popular short-term wind forecasting models include ANN, SVM, GBM, 
and RF machine learning models, which provide accurate forecasts with relatively 
low computational cost. The ensemble of individual machine learning models is 
another efficient way to improve the wind forecasting accuracy. Both individual and 
hybrid machine learning models are reviewed and discussed in this section. 

11.2.1 Single Machine Learning Algorithm Models 

ANN is a popular algorithm in speech recognition, target tracking, signal analysis, 
and nonlinear regression problems (such as time series forecasting) . ANN mimics 
the structure of the human brain that consists interconnected neurons. Each neuron 
is a weighted sum of its inputs and is connected to the neurons in the next layer. The 
ANN architecture contains one input layer, one or more hidden layer(s), and one 
output layer. The configuration of the ANN model needs to be well designed to avoid 
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over-fitting issues. ANN can be classified into different types based on different 
activation functions and learning algorithms. Deep learning is also a configuration 
of ANN. The mathematical description of the ANN is expressed as: 

(n) _ f (~ (n,n- 1) (n- 1) + en) 
Yi - Lwij ~ i 

j=l 

(11.1) 

where i is a neuron of the nth layer, Wij is the weight from the neuron j in the layer 
(n - 1) to the neuron i in layer n, and er is the threshold of the neuron i in layer n. 

SVM is originally a supervised linear classifier proposed by Vapnik (1 995). 
As one of the most popular classification methods, SVM has been applied 
in text categorization, image classification, and other recognition tasks. When 
dealing with linearly inseparable data, nonlinear mapping-based kernel methods, 
K (x) : ~ n ----+ ~ nh, are used to map the nonlinear data into the high-dimensional 
feature space. Then, a linear hyperplane is found by maximizing the distance 
between support vectors and the hyperplane. The SVM algorithm can also be 
applied in regression problems, which is called support vector regression (SVR). 
The performance of the SVR was reported to be better than other algorithms (e.g., 
ANN) in the literature. However, the compute and storage requirements increase 
significantly with the data dimension. The hyperplane function , also called the SVR 
function, is described as (Feng et al. 2017b ): 

f (x) = w TK (x) + b (11.2) 

where wand bare variables solved by minimizing the empirical risk, which is given 
by: 

1 n 

R(f) = - L0(yi,f(x)) 
n 

(11.3) 
i=l 

where 0 e(Yi, f) is the s-insensitive loss function, expressed as: 

0 ( . f) - { llf - yll - £, if llf - yll ~ £ 
E Y1 , - . 

0, otherwise 
(11.4) 

Then the optimal hyperplane is found by solving the inequality-constrained 
quadratic optimization problem. 

GBM is a highly customizable learning algorithm widely used in the regression 
and classification fields . A GBM model relies on the combination of "weak learners" 
to create an accurate learner therefore, is able to generate both deterministic and 
probabilistic results in the time series forecasting. The combination is achieved by 
adding the weighted base learner to the previous model iteratively (Kaur et al. 2014 ). 
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The principle of GBM is illustrated by the pseudo-code in Algorithm 11.1 . In each 
iteration, the negative gradient of the chosen loss function is calculated and used 
to estimate the split variables a by Eqs. (11.5) and (11.6). Then the multiplier B is 
optimized by Eq. (11.7). The weak learner Bh(x; a) is added to the previous model, 
where h(x; a) is a learning function. 

Algorithm 11.1 Gradient boosting machine (GBM) 

Initialize fo(x) to be a constant, fo (x) = arg min pLf= 1 \JI (Yi , p) 

2 for i = 1 to M do 
3 Compute the negative gradient of the loss function: 

---:- _ [ a \Jl (yi, F(xi)) J _ f · ( ) · _ {1 2 } Y1 - - aF( ·) - 1- 1 x , 1 - , , .. . , n 
x, f(x) 

4 Fit a model toy by least-squares to get at: 

at = arg min I:f= 1 [Yi - Bh (xi, a) J2 
Ct,~ 

5 Calculate Bt by: 

Bt = arg,.n I:f= 1 \JI (Yi, ft-1 (xi)+ Bh (xi, at )) 

6 Update the model by: 

ft (x) = ft - 1 (x) + Bth(x; a1) 
7 end for 
8 Output 7 (x) = fT (x) 

(11.5) 

(11.6) 

(11.7) 

(11.8) 

RF is another supervised ensemble learning method that consists of many single 
classification and regression trees (CARTs): 

(11.9) 

where T is a set of CARTs, t is a single CART, X is the input to the RF model, and 
SAi is a random vector to extract bootstrap samples which are determined by the 
bagging algorithm. The robustness of RF models is enhanced by randomness of the 
bagging algorithm and the best split search process. Since RF is a combination of 
various different regressions, the model is generally free from over-fitting (Ibarra­
Berastegi et al. 2015). 

11.2.2 Hybrid Machine Learning Models 

Due to the nonlinear and nonstationary characteristics of wind speed, it is challeng­
ing to develop a generic model based on a single machine learning algorithm that 
can produce the best forecasts at different spatial and temporal scales. Hybriding 
several single machine learning models can make the forecasting more robust. A 
hybrid example is described in this section as shown in Fig. 11.1 . This hybrid model 
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has a two-layer forecasting structure (Feng et al. 2017a). The first layer machine 
learning models are built based on the inputs, such as historical data. These models 
forecast wind speed or wind power as the output. A blending model is developed 
in the second layer to combine the forecasts produced by different algorithms from 
the first layer and to generate both deterministic and probabilistic forecasts. This 
blending model is expected to integrate the advantages of different algorithms by 
canceling or smoothing the local forecasting errors. The mathematical description 
is shown as: 

(11.10) 

Y= cf> (YI, Y2, · · ·, Ym) (11.11) 

where fi(*) is the ith algorithm and Yi is the wind speed forecasted by fi(*). <P(*) is 
the second-layer blending algorithm. 

11.2.3 Deterministic Results of the Multi-model Forecasting 

The performance of the single-algorithm and hybrid machine learning models 
is evaluated in this section. Two evaluation metrics are utilized to evaluate the 
forecasting accuracy (Feng et al. 2017a): the normalized mean absolute error 
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(nMAE) and the normalized root mean square error (nRMSE). The wind forecasting 
results provided by the GBM models (selected for the robustness and free of 
preprocessing) of more than 126,000 wind farms over the entire United States 
are shown in Figs. 11.2 and 11.3. The Wind Integration National Dataset (WIND) 
Toolkit. Toolkit (Draxl et al. 2015) data was used for the wind forecasting. It is seen 
from Figs. 11.2 and 11.3 that, the offshore locations, such as the Gulf of Mexico and 
the East Coast, present relatively high forecasting accuracy; the mountain areas, 
such as Colorado and New Mexico, have relatively low forecasting accuracy. By 
comparing Figs. 11.2 and 11.3, regions such as Washington and Oregon present 
small nMAE but large nRMSE. The variation in the forecasting accuracy across the 



11 Wind Power and Ramp Forecasting for Grid Integration 305 

Table 11.1 SURFRAD locations 

Name State Lat. Long. Elev. (m) 

Bondville (BND) IL 40.05 -88.37 230 
Boulder (TBL) co 40.12 -105 .24 1689 

Desert Rock (DRA) NV 36.62 -116.02 1007 
Fo1t Peck (FPK) MT 48 .31 -105 .24 634 

Goodwin Creek (GCM) MS 34.25 -89.87 98 

Penn. State Univ. (PSU) PA 40.72 -77.93 375 

Sioux Falls (SXF) SD 43 .73 I -96.62 473 

Table 11.2 The nMAE of 1-h-ahead forecasts 

Models BND TBL DRA FPK GCM PSU SXF 

SAM p 4.05 4.27 5.25 4.28 4.13 5.78 3.91 

SVR_li 5.26 5.04 6.65 5.18 5.42 7.13 4.93 

SVR_poly 5.04 4.90 6.17 4.93 5.06 6.86 4.86 

ANN 5.35 5.96 6.23 5.29 5.65 6.90 4.73 

GBM_g 4.95 4.82 6.02 4.80 4.82 16.68 4.78 

GBM_I 5.01 4.80 6.23 4.94 4.96 ' 6.67 4.93 

RF 5.32 4.93 6.51 5.31 5.58 7.51 5.25 

MMF SVR_Ii 4.32 5.28 5.44 4.45 6.04 6.03 4.05 

SVR_poly 4.20 4.54 5.36 4.31 5.14 5.84 4.01 

GBM 4.26 4.58 5.49 4.37 5.81 6.11 4.19 

RF 4.26 4.60 5.66 4.33 5.34 6.09 4.22 

United States is affected by a number of factors. For example, the terrain roughness 
and the climatic characteristics of the states like Washington and Oregon make wind 
series more chaotic and less forecastable. 

Both the single-algorithm models (SAM) and hybrid multi-model framework 
(MMF) are applied to the data collected from the Surface Radiation Network 
(SURFRAD), which includes seven stations (as shown in Table 11 . l ) with diverse 
climates. Tables 11.2 and 11.3 li st the nMAE and nRMSE, respectively. The multi­
model framework includes multiple individual models in the first layer and also 
several models in the second layer. Different algorithms are tested in both layers, 
which include SVR with the linear (SVR_li) and polynomial (SVR_poly) kernels, 
ANN with feed-forward back-propagation learning function and the sigmoid acti­
vation function, the GBM models with Gaussian (GBM_g) and Laplacian (GBM_l) 
loss functions, and the random forest (RF). 

As shown in Tables 11.2 and 11.3, none of the SAM models performs better than 
the persistence method (which assumes that the conditions at the time of the forecast 
will not change). Without considering the persistence model, no SAM model is 
always most accurate at all seven locations. Comparing SAM models and MMF 
models, the MMF with different blending algorithms outperforms the SAM models. 
The two-layer models have improved the accuracy of the component models by up 
to 23.8% based on nMAE and 25.6% based on nRMSE. For the blending algorithms, 



306 C. Feng and J. Zhang 

Table 11.3 The nRMSE of 1-h-ahead forecasts 

Models BND TBL ORA i FPK GCM PSU SXF 

SAM p 5.65 6.60 7.36 I 5.9] 5.68 8.27 5.42 

SVR_Ii 7.76 8.37 9.88 7.92 8.09 9.90 6.95 

SVR_poly 7.05 7.62 8.58 6.81 6.72 9.33 6.51 

ANN 7.27 8.09 8.47 6.94 7.05 9.37 6.30 

GBM_g 6.78 7.77 8.06 6.59 7.01 9.24 6.37 

GBM_l 6.79 7.71 8.86 6.68 6.67 9.42 6.52 

RF 7.36 7.21 9.10 7.35 7.46 10.04 7.11 

MMF SVR_li 6.20 8.96 7.51 6.29 9.21 8.52 5.61 

SVR_poly 5.77 7.22 7.36 6.05 7.08 8.16 5.49 

GBM 5.95 7.29 7.58 6.00 8.23 8.48 5.72 

RF 5.85 7.52 7.63 I 5.92 7.53 8.46 5.74 

the models with nonlinear blending algorithms have better performance than the 
models with linear blending algorithms. This shows that the forecasts produced from 
the first-layer models exhibit a nonlinear relationship with the actual wind speed. 
The model with the polynomial-kernel SVM algorithm is the most accurate model 
among all the MMF models. 

11.2.4 Probabilistic Results of the Multi-model Forecasting 

In addition to deterministic forecasts, the multi-model methodology can also pro­
duce probabilistic forecasts. Figure 11.4 provides an example of the deterministic 
forecasts along with the confidence intervals in the form of fan chart, at BND. The 
confidence bands are calculated based on the component models. The colors of the 
intervals fade with the increasing confidence level, ranging from 10% to 90% in a 
10% increment. The intervals are symmetric around the deterministic forecasting 
curves with a changing width. When the wind speed fluctuates within a small 
range, the confidence bands are nanow, as shown by hours 0-10. When there is 
a significant ramp, the uncertainty of the forecasts is increased and the bands tend 
to be broader, as shown by hours 150-170. This further proves the necessity of 
probabilistic forecasting. 

11.2.5 The Value of Wind Forecasting 

The accurate deterministic and probabilistic wind forecasting could benefit power 
system operators, energy traders, and wind plant owners by (i) assisting utilities to 
reduce the backup, therefore achieving savings; (ii) minimizing the production costs 
by optimizing the slow- and quick-start unit capacity; (iii) providing schedules for 



11 Wind Power and Ramp Forecasting for Grid Integration 307 

14 ~ Actual Data 
Forecasting Data 

•10% 

12 
.20% 
.30% 
. 40% 
. 50% 

- 10 . 60% 
Cl) -- 70% E 80% -"O 8 90% (]) 
Q) 
a. 

Cl) 

"O 6 C 

~ 
4 

2 

0 

0 20 40 60 80 100 1 20 1 40 160 180 200 
Samples 

Fig. 11.4 Deterministic forecasting from the MMF _FS with confidence intervals at BND 

wind turbine starting up/shutting down in the response to fluctuations; (iv) helping 
wind farm operators, especially offshore wind farm operators, to better schedule 
wind turbine maintenance; and (v) reducing curtailment of the wind generation. 
Overall, the improved wind forecasts could be helpful in reducing the operation 
costs and increasing the system reliability. The forecasts can also be used to 
determine the charge and discharge schedule of energy storage in a micro-grid 
system with distributed wind generators and energy storage. 

11.3 Wind Power Ramp Event Detection 

Wind power ramps significantly affect the regulation of traditional generators for 
better managing and dispatching the wind power. Therefore, better detecting and 
forecasting ramp events are very helpful for power system operators to make 
operational decisions. Regarding wind power ramp detection, Sevlian and Rajagopal 
(2012, 2013) proposed an optimal detection technique to identify all WPREs by 
defining a family of scoring functions associated with any ramping rules and using 
recursive dynamic programming. Zhang et al. (2014) adopted the swinging door 
algorithm (SDA) to extract ramp events from actual and forecasted wind power time 
series. Cui et al. (2016) developed an optimized swinging door algorithm (OpSDA) 
to improve ramp detection performance, by segregating wind power time series with 
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the SDA and merging all ramps with a dynamic programming algorithm. Karnath 
(2010, 2011) used feature selection techniques from data mining to determine ramps 
in wind power generation. 

A number of statistical and machine learning methods have been developed in 
the literature to forecast wind power ramps at multiple forecasting horizons. For 
example, Cui et al. (2016, 2017) modeled the wind power generation as a stochastic 
process by using a neural network and a genetic algorithm and then forecasted the 
probability distributions of three WPRE properties. Cutler et al. (2007) compared 
the efficiency of the Wind Power Prediction Tool (WPPT) and the Mesoscale 
Limited Area Prediction System (MesoLAPS) for WPRE forecasting. Zareipour 
et al. (2011 ) mined historical data and predicted the class of WPREs using support 
vector machines. Greaves et al. (2009) calculated temporal uncertainty to provide 
an indication of the likely timing of WPREs. 

This chapter reviews and discusses a recently developed wind power ramp 
detection method, the optimized swinging door algorithm (OpSDA). The OpSDA 
(Cui et al. 2015) is a two-stage process method. The first stage is a data segregation 
process based on SDA. SDA is used to segregate wind power signals according to 
the user-specified definition of a ramp. The second stage is an optimization process 
based on a dynamic programming algorithm. Dynamic programming is used to 
merge adjacent segments that are segregated with the same ramp changing direction 
in the first stage. 

11.3.1 Swinging Door Algorithm (SDA) 

The SDA algorithm (Bristol 1990; Barr 1994) is based on the concept of a "swinging 
door" with a "hinge" or "pivot point" whenever the next point in the time series 
causes any intermediate point to fall outside the area partitioned by the up and down 
segment bounds. The segment bounds are defined by the door width, ±c, which 
is the only tunable parameter in the SDA. More detailed descriptions of the SDA 
can be found in Florita et al. (2013) and Makarov et al. (2009). After segregating 
the wind power signal by SDA, wind power ramping events (WPREs) are extracted 
according to the user-specified definition of a significant ramp. 

11.3.2 Optimized Swinging Door Algorithm ( OpSDA) 

The objective of the optimization in the SDA is to minimize the number of individual 
ramps whereas still approximating the wind power signal as a ramp. Therefore, 
adjacent segments that have the same slope (e.g., up-ramps) can be merged into 
one segment. Toward this end, an optimization process is applied to the original 
segments (from the SDA) using a dynamic programming algorithm. Dynamic 
programming is a method for solving a complex problem by breaking it down into 
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a collection of simpler subproblems. Every subinterval (subproblem) of the ramp 
detection problem complies with the same ramp rules. First, the subintervals that 
satisfy the ramp rules are rewarded by a score function; otherwise, their score is set 
to zero. Next, the current subinterval is retested as above after being combined with 
the next subinterval. This process is performed recursively to the end of the dataset. 
Finally, the significant ramp with the maximum score is extracted. More detailed 
formulations of the dynamic programming algorithm used in this work are shown 
in Eqs. (1 1.12), (11.13), and (1 1.14). 

In this chapter, an increasing length score function, S, is designed based on the 
length of the interval segregated by the SDA. The optimization problem seeks to 
maximize the length score function, which corresponds to a ramp event. Given a 
time interval, (i, j), of all discrete time points and an objective function, J, of the 
dynamic programming algorithm, a WPRE is detected by maximizing the objective 
function: 

subject to: 

J (i , j) = max [S (i , k) + J (k, j)] , i < j 
i <k S j 

S (i, j) > S (i, k) + S (k + 1, j) , Vi < k < j 

S (i , j) = (j - i) 2 x R (i , j) 

(11.12) 

(11.13) 

(11.14) 

where J(i, j) can be computed as the maximum over U-i) subproblems. The term of 
S(i, k) is a positive score value corresponding to the interval, (i, k), which conforms 
to a super-additivity property in Eq. (1 1.13). There is a family of score functions 
satisfying Eq. (1 1.13), and the score function presented in (Sevlian and Rajagopal 
2013) is adopted in this research, expressed as Eq. (1 1.14). R(i , j) represents a ramp 
within the time interval (i, j). Significant wind power ramps can be defined based on 
the power change magnitude, direction, and duration . Three definitions proposed in 
(Zhang et al. 2014) are investigated in this research: 

(i) Significant ramp definition ]-the change in wind power output is greater than 
20% of the installed wind capacity without constraining the ramping duration. 

(ii) Significant ramp definition 2-the change in wind power output is greater than 
20% of the installed wind capacity within a time span of 4 h or Jess . 

(iii) Significant ramp definition 3-a significant up-ramp is defined as the change 
in wind power output greater than 20% of wind capacity within a time span 
of 4 h or less; a significant down-ramp is defined as the change in wind power 
output greater than 15% of the installed wind power capacity within a time 
span of 4 h or less. 

If R(i , j) conforms to the threshold of ramp definitions, R(i, j) is 1; otherwise, 
R(i, j) is 0. Since the process of detecting down-ramps is the opposite process of 
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detecting up-ramps, note that up-ramp detection is taken as an example to illustrate 
the specific detecting process. 

When optimizing ramps, one of the more interesting findings was the presence 
of small ramps (non-WPREs), which are termed "bumps" in this paper and set as 
B(i, j) in the formulations below. The key characteristic of a bump is the changing 
direction (e.g., a down-bump between two up-ramps or an up-bump between two 
down-ramps), which makes the iteration of the dynamic programming to break 
abruptly due to the strict super-additivity property in Eq. (1 1.13). When a bump 
occurs, it breaks one integrated WPRE into two discrete ramps, which affects the 
performance of WPRE detection. To address this issue, the dynamic programming 
process is improved so that it can also merge ramps and bumps with different 
changing directions. If B(i, j) conforms to the threshold of bump definitions, B(i, 
j) is assigned to be 1; otherwise, B(i , j) is assigned to be 0. During the recursion, 
bumps are also considered and merged into the WPRE. 

11.3.3 Experimental Results 

In this section, the OpSDA is applied to two case studies. We present various 
statistics to analyze the detected WPREs and parameterize the WPRE process. The 
total wind power generation is taken from a balancing area in the northwestern 
region of the United States. The dataset contains 7,884,012 samples sampled every 
4 s spanning from October 1, 2012, to September 30, 2013. In this case, we use 
the maximum power output, 123 MW, as the base benchmark capacity. The 4-s 
dataset is averaged to obtain wind power data at different timescales: 1-min, 5-
min, 15-min, 30-min, 1-h, and 2-h. A total of 2,089 ramps within 1-min timescale 
(1,941 ramps within 5-min timescale, 1,701 ramps within 15-min timescale, 1,340 
ramps within 30-min timescale, 1,009 ramps within 1-h timescale, and 705 ramps 
within 2-h timescale) are detected and utilized to generate the probability density 
distributions. Figure 11 .5 shows the ramp feature statistics and seasonal ramp counts 
of each timescale over the course of a whole ·year. 

Figure 11.5a indicates that along with the increasing timescale (from 1-min to 2-
h), for ramp durations, the peak duration value and probability density rise from 
50 min with 0.03-400 min with 0.17. For the distribution of ramp change rate 
in Fig. 11.5b, the peak change rate value decreases from 0.004 p.u./rnin to 0.001 
p.u./min, whereas the corresponding probability density rises from 80 to 820. For 
the distribution of ramp magnitude in Fig. 11.5c, the peak magnitude value rises 
from 0.21 p.u. to 0 .33 p.u. , whereas the corresponding probability density decreases 
from 9 to 2. Figure 11.5d illustrates that the seasonal ramp counts also decrease 
along with the increasing timescale in each season. There are relatively fewer ramp 
events occurring in winter and spring, whereas there are relatively more ramp events 
occurring in summer and fall. This can be partially attributed to the higher wind 
generation in summer and fall as shown in Fig. 11 .5e. It is seen from Figs. 11.5d and 
I 1.5e that seasonal ramp counts increase along with the increasing wind generation. 
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Fig. 11.5 Probability density distributions of ramp features of six timescales (I-min, 5-min, 15-
min, 30-min, 1-h, and 2-h) and seasonal ramp counts over a whole year for Case II. (a) Ramp 
duration. (b) Ramp change rate. (c) Ramp magnitude. (d) Seasonal ramp counts. (e) Seasonal 
wind generation 
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11.4 Multi-timescale Power System Operations with Variable 
Wind Generation 

11.4.1 Multi-timescale Scheduling Models 

Wind power ramps usually show different characteristics in the multi-timescale 
power system operations, including ramping starts, ramping magnitudes, and ramp­
ing durations. To study the impact of wind power ramps on power system operations, 
multi-timescale scheduling models as illustrated in Fig. 11.6 could be used. A 
multi-timescale steady-state power system operation simulation tool consists of 
different sub-models, such as day-ahead security-constrained unit commitment 
(DASCUC), real-time security-constrained unit commitment (RTSCUC), real-time 
security-constrained economic dispatch (RTSCED), and automatic generation con­
trol (AGC). 
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Fig. 11.6 Timeframes of multi-timescale scheduling models 
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Figure 11.7 exhibits an example of multi-timescale wind power ramping product 
(WPRP) detection. The rectangle represents the ramping product that can be 
provided by wind power at the current time. The first three blue rectangles consist 
of one up-WPRP with the ramping start time tl and ramping end time t4 in the 
1-h timescale. The up-WPRP in the 15-rninute-timescale model starts at time t2 
(=tl + 15 min) and terminates at time t3 (=t4-15 min). Moreover, the ramping 
capacity in the 15-min-timescale model is much less than that in the 1-h-timescale 
model, according to the areas of blue and yellow rectangles. The same phenomenon 
can also be found in the down-WPRP (time t5 t7 and time t6 t7). Under this 
circumstance, it is essential to characterize and consider WPRP features in a multi­
timescale fashion. 

11.5 Conclusions 

In this chapter, several widely used models for the short-term wind forecasting and 
ramp forecasting were reviewed and discussed. The 1-h-ahead wind power forecasts 
at over 126,000 wind sites in the United States were generated using a gradient 
boosting machine model. We also found that the ensemble machine learning models 
have improved the wind forecasting accuracy, compared with the single-algorithm 
models. A recently developed wind power ramp detection method was introduced in 
this chapter. The results showed that the OpSDA successfully identified wind power 
ramps and performed significantly better than the SDA. The accurate wind power 
forecasts and ramp detection could benefit power system operators, energy traders, 
and wind plant owners. 
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