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Abstract—Probabilistic wind power forecasts that quantify the
uncertainty in wind output have the potential to aid in the
economic grid integration of wind power at large penetration
levels. In this paper, a novel probabilistic wind forecasting
approach based on pinball loss optimization is proposed, in
conjunction with a multi-model machine learning based ensemble
deterministic forecasting framework. By assuming the point-
forecasted value as the mean at each point, one unknown
parameter (i.e., standard deviation) of a predictive distribution
at each forecasting point is determined by minimizing the pinball
loss. A surrogate model is developed to represent the unknown
distribution parameter as a function of deterministic forecasts.
This surrogate model can be used together with deterministic
forecasts to predict the unknown distribution parameter and
thereby generate probabilistic forecasts. Numerical results of case
studies show that the proposed method has improved the pinball
loss by up to 35% compared to a baseline quantile regression
forecasting model.

Index Terms—probabilistic wind forecasting, optimization, sur-
rogate model, machine learning, pinball loss.

I. INTRODUCTION

The uncertain and variable nature of wind imposes chal-
lenges to integrate wind power, particularly at large penetration
levels. Improved wind forecasts are needed to assist power
system planning and operations.

A number of wind forecasting technologies have been
developed in the literature and have also been applied to a
variety of power system operation and planning problems. For
example, Lee et al. [1] used improved wind power forecasts
to reduce the cost of system ancillary services (AS) and to
conduct a system risk analysis. Botterud et al. [2] applied
wind power forecasts in unit commitment (UC) and economic
dispatch (ED) decision making to provide dynamic operat-
ing reserves, which benefits system operators and electricity
traders. In electricity markets for energy, conventional deter-
ministic forecasts are not sufficient to describe the inherent
unpredictability of wind power, which accommodates through
operating reserves. As a result, probabilistic forecasts that
provide quantitative uncertainty information associated with
wind power are expected to assist power system operations
better. The output of a probabilistic wind forecast usually
takes the form of probability distribution associated with point
forecasts, namely the expectation. Methods of constructing
predictive distributions can be mainly classified into paramet-
ric and non-parametric approaches in terms of distribution
shape assumptions [3]. A prior assumption of the predictive

distribution shape is made via parametric methods. Once
an analytical form of the predictive distribution is defined,
parameters describing this distribution can be determined from
data, which generally requires low computational cost. Distri-
bution parameters can be estimated through different methods,
and non-linear time series is one of the most popular used
methods. For example, Pinson et al. [4] proposed a conditional
parametric autoregression model to estimate the parameters of
a Generalized Logit-Normal (GL-normal) distribution which is
a discrete-continuous mixture of GL-normal distribution and
two probability masses.

For distribution-free non-parametric approaches, the pre-
dictive distribution is estimated through a finite number of
observations. Quantile regression (QR) and kernel density
estimation (KDE) are traditional non-parametric probabilistic
forecasting methods [5]. Haben et al. [6] proposed a non-
parametric hybrid method, which combines the KDE and QR
together to generate probabilistic load forecasts. Ordiano et
al. [7] conducted probabilistic solar power forecasting using a
Nearest-Neighbor based non-parametric method.

Pinball loss is one of most popular used metrics for eval-
uating the performance of probabilistic forecasting [8]. In
this paper, a novel two-step probabilistic wind forecasting
method is developed based on pinball loss optimization. First,
deterministic forecasts are generated (with any deterministic
forecasting methods). Second, a set of unknown parameters
in the predictive distribution are optimized determined by
minimizing the pinball loss. The optimal prediction distribu-
tion parameters are first determined in the training dataset.
A surrogate model is developed to represent the unknown
distribution parameter as a function of deterministic forecasts.
At the forecasting state, the surrogate model is then used
together with deterministic forecasts to predict the unknown
distribution parameter and thereby generate probabilistic fore-
casts. The main contribution of this paper is to develop a
two-step probabilistic wind forecasting methodology based on
pinball loss optimization, which quantifies the uncertainties of
wind speed/power and improves the forecasting accuracy.

The remainder of the paper is organized as follows. Section
II describes the proposed probabilistic forecasting method,
including a multi-distribution model and pinball loss based
optimization process and a deterministic forecasting method.
Section III applies the developed pinball loss based probabilis-
tic forecasting method to multiple wind datasets, and compares
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the forecasting performance with benchmark models. Conclud-
ing remarks and future work are discussed in Section IV.

II. METHODOLOGY
An optimal pinball loss based short-term probabilistic fore-

casting method is developed in this paper and the overall
framework is illustrated in Fig. 2. This is a two-step probabilis-
tic forecasting method, consisting of deterministic forecasts
generation and predictive distribution (type and parameters)
determination. A machine learning based multi-model fore-
casting framework (MMFF) is first adopted to generate short-
term deterministic wind forecasts (i.e., 1-hour-ahead (1HA)
here). To generate probabilistic forecasts, deterministic fore-
casts are considered as means of predictive distributions as
described in Fig. 1, and unknown parameters of the predictive
distributions are solved by minimizing pinball loss. The dis-
tribution with the minimum pinball loss in conjuction with a
surrogate model, are used to generate probabilistic forecasts.
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Fig. 1: Deterministic wind speed forecasts and predictive
distribution

A. MMFF deterministic forecasting

The proposed pinball loss based probabilistic forecasting
methodology is a two-step method, which can be applied
with any deterministic wind forecasts. In this paper, a MMFF
system consisting of an ensemble of four single machine
learning algorithms with various kernels is adopted to generate
deterministic forecasts. Details of the MMFF method can be
found in [9].

B. Multi-distribution model

A multi-distribution database is formulated to model the
possible shapes of the predictive distribution. Four distribution
types are considered, which are Gaussian, Gamma, Laplace,
and non-central t distributions. Probability density functions
(PDFs) of the four aforementioned distributions are listed in
[10]. Parameters used to describe the four predictive PDFs
are all related to their mean and standard deviation values.
Therefore, all of the PDFs can be represented in the form
of mean µ and standard deviation σ, namely f(x|µ, σ). A

cumulative distribution function (CDF), F (x|µ, σ), can be
deduced through the integration of a PDF.

C. Pinball loss based optimization

Pinball loss is one of the most popular metrics for evaluating
probabilistic forecasts [8], and is a function of observations
and quantiles of a forecast distribution. A smaller pinball loss
value indicates a better probabilistic forecast.

L(qm, xi) =

 (1− m

100
)× (qm − xi), xi < qm

m

100
× (xi − qm), xi ≥ qm

(1)

Where xi represents the ith hour observation, m represents
a quantile percentage from 1 to 99, and qm represents the
predicted quantile. For a given m percentage, the quantile qm
represents the value of random variable whose accumulated
probability density (i.e., CDF) is m percentage. The quantiles
of different distributions types are represented by a standard
deviation σ. In this paper, the optimal standard deviation σ
is determined by minimizing the sum of pinball loss function
L(·), by considering appropriate constraints. A genetic algo-
rithm (GA) is used to solve this optimization problem. GA is
a widely used heuristic method for solving both constrained
and unconstrained optimization problems [11]. In this study,
the maximum number of iterations is set to 100 and the
iteration stops if the improvement is less than 0.001. At
each deterministic forecasting time point, an optimal standard
deviation which minimizes the pinball loss of this single point
is found accordingly. The optimization problem is formulated
as follows.

min
σ

99∑
m=1

L(qm(σ), xi)

subject to (2)
σl ≤ σ ≤ σu

Where σl and σu represent lower and upper bounds of the
unknown standard deviation, respectively. In this paper, the
lower and upper bounds of standard deviations are set to be
0 m/s and 10 m/s, respectively [12]. The distribution with the
minimum pinball loss is selected as the predictive distribution
shape. The optimal σ’s estimated using the training data
are used to construct a surrogate model to be used in the
forecasting stage.

D. Surrogate model

To generate probabilistic forecasts, an optimal standard
deviation value is needed at every forecasting time point. To
obtain this optimal standard deviation value, a surrogate model
is developed to represent the optimal standard deviation as
a function of deterministic forecasting value based on the
training data, which is expressed by:

σ̂ = f(xp) (3)

Where xp is a point forecast and f(·) is a surrogate model of
the optimal standard deviation of the predictive distribution.
A support vector regression method is used in this paper to
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Fig. 2: Overall framework of the pinball loss based probabilistic wind forecasting framework

construct the surrogate model. This surrogate model is used to
estimate the standard deviation of the predictive distribution in
the forecasting stage, thereby generating the final probabilistic
forecasts.

III. CASE STUDIES AND RESULTS

A. Data Summary

The proposed pinball loss based probabilistic forecasting
approach is applied to 7 locations for wind speed forecasts.
The wind speed data is collected near hub height with a 1-hour
resolution [13]. The duration of collected data is summarized
in Table I. For all locations, the first 2/3 of data is used as
training data. The last 1/12 of the training data is used to
build a surrogate model between optimal standard deviation
and deterministic forecasts. The effectiveness of forecasts is
evaluated by the remaining 1/3 of data. While the proposed
method is capable of generating forecasts at multiple forecast-
ing timescales, only 1HA forecasts are generated in this study.

TABLE I: Data duration at selected sites

Site Data duration
Boulder NWTC 2009-01-02 to 2012-12-31
Bovina50 2010-10-10 to 2012-10-08
Bovina100 2010-03-03 to 2012-03-01
CapeMay 2007-09-26 to 2009-09-24
CedarCreek H06 2009-01-02 to 2012-12-31
Goodnoe Hills 2007-01-01 to 2009-12-31
Megler 2010-11-03 to 2012-11-01

B. Pinball loss optimization results

Pinball loss values with different predctive distributions are
listed in Table II. The sum of pinball loss is averaged over all
quantiles from 1% to 99% and normalized by the maximum
wind speed at each site. A lower loss score indicates a better
probabilistic forecast. It can be seen that the Laplace distri-
bution with MMFF has the smallest pinball loss value at all
locations except CedarCreek H06. The lower pinball loss in
CedarCreek H06 using Laplace distribution with persistence
method is mainly due to that the persistence deterministic fore-
casts perform better than MMFF forecasts. A quantile regres-
sion (QR) method, persistence-laplace (PS Laplace) method
with pinball loss optimization, and a MMFF-Laplace method
without pinball loss optimization are used as baselines in
case studies. The MMFF-Laplace forecasts have improved the
pinball loss by up to 35% compared to the three benchmark
models. Therefore, the Laplace distribution is finally chosen to
generate probabilistic wind speed forecasts. It is also important
to note that the methods of MMFF-Gaussian, MMFF-Gamma,
and MMFF-Laplace perform similarly, which indicates that
the optimization can help achieve a better accuracy with
different predictive distribution types. For the baseline method
of MMFF-Laplace without pinball loss optimization, a random
standard deviation value is selected from the range between the
minimum and maximum values of the optimal σ. We repeat
this process 30 times to obtain an average sum of pinball loss
without optimization. The training time of the MMFF-laplace
method ranges from 1 to 2 hours, and the forecasting time
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ranges from 2 to 5 miniutes.

C. Deterministic forecasting results

Standard metrics of root mean squared error (RMSE), mean
absolute error (MAE), and their corresponding normalized
indices, i.e., NMAE and NRMSE, are adopted to evalu-
ate deterministic forecasting performance. For these metrics,
a smaller value indicates better performance. Deterministic
forecasting errors using MMFF at the selected locations are
summarized in Table III. It is shown that the 1HA NMAE and
NRMSE are in the range of 3%-5% and 4%-7%, respectively.
An example of the forecasts at the Megler site from 2012-
02-01 to 2012-02-04 are shown in Fig. 3. The persistence
method is used as a baseline and the forecasting errors are also
summarized in Table III. Overall, the accuracies of MMFF
deterministic forecasts are better than those of persistence
forecasts except CedarCreek H06.

D. Probabilistic forecasting results

With estimated scale parameters through pinball loss min-
imization and surrogate modeling, predictive wind speed dis-
tributions are determined and the quantiles q1, q2, ..., q99
can be calculated. To better visualize probabilistic forecasts,
the 99 quantiles are converted into nine predictive intervals
Iβ (β=10, ..., 90) in a 10% increment. Fig. 3(a) shows an
example of probabilistic wind speed forecasts at the Megler
site from 2012-02-01 to 2012-02-04. It is seen that the width
of the predictive interval varies with the level of wind speed
fluctuation. When the wind speed fluctuates significantly, the
predictive interval tends to be wider, i.e., the uncertainty in
wind speed forecasts is relatively higher. Fig. 3(b) shows
probabilistic forecasts generated from the baseline quantile
regression method at the same site and time period. It is
seen that the predictive intervals of the proposed MMFF-
Laplace with pinball loss optimization method are narrower
than those of the QR method. Thus, there is less uncertainty
in the proposed probabilistic forecasts.

1) Reliability: Reliability (RE) stands for the correctness of
a probabilistic forecast that matches the observation frequen-
cies [14].

RE =

[
ξ(1−α)

N
− (1− α)

]
× 100% (4)

where N is the number of test samples, and ξ(1−α) is the
number of times that the actual test samples lie wthin the
αth prediction interval. With measured emperical coverage,
a reliability diagram can be plotted to describe the quantile
forecast series with different nominal proportions. A reliability
plot shows whether a given method tends to systematically
underestimate or overestimate the uncertainty. In this study, the
nominal coverage rates range from 10% to 90% with a 10%
increment. Fig. 4 shows the reliability curves of probabilistic
forecasts at the CapeMay, Megler, and Bovina50 sites. A
forecast presents better reliability when the curve is closer to
the diagonal. It is seen that overall the QR has better reliability
performance, due to the fact that the confidence band of QR is
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Fig. 3: MMFF-Laplace and quantile regression forecasts at the
Megler site

much wider than that of the proposed MMFF-Laplace method.
A wider confidence band indicates that the results take more
errors into consideration. However, it is important to note that
the reliability over the 90th confidence intervals is similar
between the proposed method and the baseline QR method,
which is generally more important in probabilistic forecast
applications in power system operations. Also, it is seen that
overall the MMFF-Laplace with pinball loss optimization has
much better reliability than that of the MMFF-Laplace without
pinball loss optimization, which indicates effectiveness of the
pinball loss optimization.

2) Sharpness: Sharpness indicates the capacity of a fore-
casting system to forecast extreme probabilities [15]. This
criterion evaluates the predictions independently of the ob-
servations, which gives an indication of the level of use-
fulness of the predictions. For example, a system that only
provides uniformly distributed predictions is less useful for
decision making under uncertainty. Predictions with perfect
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TABLE II: Normalized optimal sum of pinball loss

Site Boulder NWTC Megler CedarCreek H06 Goodnoe Hills Bovina50 Bovina100 CapeMay
QR 2.22 1.76 2.03 1.96 2.56 2.44 1.95
MMFF Gaussian 1.74 1.26 1.44 1.35 1.86 1.69 1.27
MMFF Gamma 1.74 1.26 1.43 1.35 1.87 1.69 1.27
MMFF Laplace 1.72 1.25 1.43 1.35 1.85 1.68 1.26
MMFF noncentral t 1.74 1.81 2.20 2.21 2.68 3.41 2.56
MMFF Laplace (without opt) 2.94 2.93 2.40 2.39 3.53 3.08 2.45
PS Laplace 1.81 1.29 1.34 1.38 1.92 1.69 1.32

Note: The smallest normalized optimal sum of pinball loss at each location is in boldface.

TABLE III: Deterministic forecasting results using MMFF and PS

Method Site Boulder NWTC Megler CedarCreek H06 Goodnoe Hills Bovina50 Bovina100 CapeMay

MMFF NMAE(%) 4.71 3.36 3.86 3.72 5.00 4.56 3.39
NRMSE(%) 6.87 4.65 5.43 5.09 6.64 6.28 4.74

PS NMAE(%) 4.97 3.51 3.69 3.85 5.27 4.68 3.59
NRMSE(%) 7.23 4.87 5.08 5.27 7.04 6.46 4.98

sharpness are discrete predictions with a probability of one
(i.e., deterministic predictions). The sharpness is measured
by the average size of the predictive intervals. The sharpness
of the proposed pinball loss based MMFF-Laplace forecasts,
QR, pinball loss based MMFF with other distribution types,
and MMFF-Laplace without pinball loss optimization at the
CapeMay, Megler, and Bovina50 site are compared in Fig. 5.
It is seen that the sharpness of pinball loss based forecasts are
better than that of the baseline QR method. It is also observed
that the expected intervals size increases with increasing nom-
inal coverage rate. Also, the MMFF-Laplace with pinball loss
optimization has much better sharpness than that of MMFF-
Laplace without pinball loss optimization. The intervals size
of pinball loss based MMFF-Laplace forecasts ranges from
2% up to 18%, which indicates low sharpness.

IV. CONCLUSION

In this paper, an optimal pinball loss based probabilistic
wind forecasting method was developed, in conjunction with
a multi-model deterministic forecasting framework. Different
shapes of predictive distributions are tested and compared,
including Gaussian, Gamma, Laplace, and non-central t dis-
tributions. The optimal shape parameter of the predictive
distribution is determined by minimizing the sum of pinball
loss using training data. This optimal shape parameter is used
in the forecasting stage through surrogate modeling. We found
that the laplace distribution presents the best pinball loss.
Results showed that the proposed probabilistic forecasting
method could reduce the pinball loss by up to 35% compared
to the baseline methods. The relationship between the accuracy
of deterministic and probabilistic forecasts will be explored in
future work.
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Fig. 4: Reliability of probabilistic forecasts on selected sites
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