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H I G H L I G H T S

• A pinball loss optimization based probabilistic forecasting method is developed.

• The best shape of a predictive distribution is explored and optimized.

• The proposed method reduces pinball loss by up to 35% compared to baselines.
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A B S T R A C T

With increasing wind penetrations into electric power systems, probabilistic wind forecasting becomes more
critical to power system operations because of its capability of quantifying wind uncertainties. In this paper, a
two-step probabilistic wind forecasting approach based on pinball loss optimization is developed. First, a
multimodel machine learning-based ensemble deterministic forecasting framework is adopted to generate de-
terministic forecasts. The deterministic forecast is assumed to be the mean value of the predictive distribution at
each forecasting time stamp. Then, the optimal unknown parameter (i.e., standard deviation) of the predictive
distribution is estimated by a support vector regression surrogate model based on the deterministic forecasts.
Finally, probabilistic forecasts are generated from the predictive distribution. Numerical results of case studies at
eight locations show that the developed two-step probabilistic forecasting methodology has improved the pinball
loss metric score by up to 35% compared to a baseline quantile regression forecasting model.

1. Introduction

The uncertain and variable nature of wind imposes challenges on
the grid integration of wind power, particularly at high penetration
levels. Wind forecasting plays an important role in reducing the un-
certainty of wind power output in operations. This can be useful at
different time horizons, from day-ahead for unit commitment to min-
utes- and hours-ahead for economic dispatch. Probabilistic wind power
forecasts provide even more information about the possible wind gen-
eration output, thus their inclusion directly in system operations is an
active research area.

1.1. Literature review

A number of wind forecasting technologies have been developed in
the literature to assist power system operation and planning. For

example, Lee et al. [1] used improved wind power forecasts to reduce
the cost of system ancillary services and conduct a system risk analysis.
Botterud et al. [2] applied wind power forecasts in unit commitment
and economic dispatch decision-making to provide dynamic operating
reserves, which provided benefits to system operators and electricity
traders. In electricity markets, it has been found that conventional de-
terministic forecasts might not be sufficient to characterize the inherent
uncertainty of wind power. Probabilistic forecasts that provide quan-
titative uncertainty information associated with wind power are
therefore expected to better assist power system operations. Probabil-
istic wind forecasts usually take the form of probability distributions
associated with point forecasts, namely, the expectation. Existing
methods of constructing predictive distributions can be mainly classi-
fied into parametric and nonparametric approaches in terms of dis-
tribution shape assumptions [3]. A prior assumption of the predictive
distribution shape is made in parametric methods, and unknown
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distribution parameters are estimated based on historical data. Para-
metric approaches generally require low computational cost. Gaussian
[4] and beta [5] distributions are two commonly used predictive dis-
tributions in probabilistic wind forecasting. However, Gaussian and
beta distributions could not capture the fat tails and double bounded
properties of wind power distribution. To better account for the non-
linear and double-bounded properties of wind power generation in
short-term probabilistic forecasting, Pinson et al. [6] proposed a gen-
eralized logit-normal (GL-normal) distribution.

Once an analytical form of the predictive distribution is defined,
distribution parameters can be estimated by using different methods.
For estimators of local parameters, non-linear time series is one of the
most popular categories of methods. For example, Pinson et al. [6]
developed a conditional parametric auto-regression model to estimate
the parameters of a GL-normal distribution, which is a discrete-con-
tinuous mixture of the GL-normal distribution and two probability
masses. For estimators of scale parameter, autoregression-generalized
autoregressive with conditional heteroscedasticity models are one of
the most popular used methods [7]. Other methods to estimate dis-
tribution parameters in probabilistic wind forecasts include maximum
likelihood method [8], least squares method [9], method of moments
[10], and the fast Bayesian approach [11]. Overall, none of the dis-
tribution parameter estimation methods mentioned above aims at op-
timizing the probabilistic forecasting metrics (e.g., pinball loss). While
it is challenging to select a universal predictive distribution under dif-
ferent wind conditions, this paper seeks to explore the hypothesis that
adaptively optimizing the prediction distribution (e.g., standard de-
viation) could further improve the performance of probabilistic fore-
casting.

In addition to parametric approaches, nonparametric approach is
another way to provide probabilistic forecasts. Instead of assuming a
predictive distribution, the quantiles are estimated through a finite
number of observations. Quantile regression (QR) is one of the tradi-
tional nonparametric probabilistic forecasting methods [12]. However,
the widely used QR is a direct function of the point forecast and pre-
dictors, and it can only provide the range of the given percentage [13].
Haben et al. [14] developed a nonparametric hybrid method that
combines KDE and QR to generate probabilistic load forecasts. Ordiano
et al. [15] conducted probabilistic solar power forecasting using a
nearest-neighbor-based nonparametric method. Most existing para-
metric and nonparametric probabilistic wind forecasting approaches
focus on statistical methods. In addition to traditional statistical ap-
proaches, the performance of probabilistic wind forecasting can be
further improved by machine learning techniques. For example, Wan
et al. [16] used an extreme learning machine to predict the optimal
prediction interval without using statistical inferences and distribution
assumptions. In the Global Energy Forecasting Competition 2014
(GEFCom2014), Landry et al. [17] used gradient-boosted machines
(GBM) for multiple quantile regression to fit each quantile and zone
independently and generate probabilistic forecasts. Zhang et al. [18]
developed a probabilistic forecasting method based on k-nearest
neighbor point forecasts through KDE. Wang et al. [19] used deep
convolutional neural network and wavelet transform to quantify the
wind power uncertainties with respect to model misspecification and
data noise.

1.2. Research objective

To adaptively optimize the predictive distribution shape and com-
bine the advantages of statistical and machine learning approaches, this
paper develops a two-step probabilistic forecasting method based on
pinball loss optimization. Pinball loss is one of the most popular metrics
for evaluating the performance of probabilistic forecasting [20]. First,
deterministic forecasts are generated by a machine learning-based
multi-model (M3) forecasting framework. Second, a set of unknown
parameters in the predictive distribution are determined by minimizing

the pinball loss using the generic algorithm. Note that the optimal dis-
tribution parameter is adaptive and dynamically updated based on the point
forecast value at each time stamp. The optimal adaptive predictive dis-
tribution parameters are first determined offline with the historical
training data. Then a surrogate model is developed to represent the
optimizeddistribution parameter as a function of the deterministic
forecast. At the online forecasting stage, the surrogate model is used
together with deterministic forecasts to adaptively predict the unknown
distribution parameters and thereby generate probabilistic forecasts.
The main contributions of this paper include:

• Develop a two-step probabilistic wind forecasting methodology
based on pinball loss optimization.

• Select the best predictive distribution and adaptively optimize the
predictive distribution shape simultaneously.

• Explore the relationship between deterministic and probabilistic
forecasting accuracies.

The remainder of the paper is organized as follows. Section 2 de-
scribes the proposed pinball loss-based probabilistic forecasting
method, including a multi-distribution database, a pinball loss-based
optimization process, and a deterministic forecasting method. Section 3
validates the effectiveness of the proposed method by means of a
comparison with multiple benchmark models at eight locations. The
relationship between the deterministic and probabilistic forecasting
accuracies is also explored in this section. Concluding remarks and
future work are discussed in Section 4.

2. Pinball loss-based short-term probabilistic forecasting

The overall framework of the proposed optimal pinball loss-based
short-term probabilistic forecasting method is illustrated in Fig. 1. This
is a two-step probabilistic forecasting method, consisting of determi-
nistic forecast generation and predictive distribution (type and para-
meters) determination. In the first step, the machine learning-based
multimodel (M3) forecasting framework is adopted to generate short-
term deterministic wind forecasts (i.e., 1-h-ahead), which are con-
sidered as a means of predictive distributions at each forecasting time
stamp. In the second step, a set of optimal standard deviation values are
determined through pinball loss optimization at the training stage. The
relationship between the deterministic forecasts and the corresponding
optimal standard deviations is quantified through a SVR surrogate
model. At the forecasting stage, we generate deterministic forecasts
first. Then, we feed the deterministic forecasts to the surrogate model
built at the training stage to estimate a new set of standard deviation
values (pseudo-optimal standard deviation). Finally, these estimated
pseudo-optimal standard deviation values and the deterministic fore-
casts are used together to generate probabilistic forecasts. The pseu-
docode of the probabilistic forecasting model is illustrated in Algorithm
1.

Algorithm 1.M3 probabilistic forecasting method based on pinball loss
optimization

Data: Deterministic wind power forecasts
Result: Probabilistic forecasts

1 Initialization: Obtain PDF of a single model and represent it in the form of mean μ
and standard deviation σ as f x μ σ( | , );

2 Calculate CDF F x μ σ( | , ) of the predictive distribution;

3 Calculate quantile function through −q F x μ σ( ( | , , ))i
i1

100
;

4 Calculate optimal σ ’s through pinball loss optimization;
5 Build a surrogate model between deterministic forecasts and optimal σ ’s;
6 Estimate pseudo-optimal σ based on deterministic forecasts;
7 Generate probabilistic forecasts.
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2.1. Machine learning-based multimodel (M3) deterministic forecasting

M3, a two-layer, short-term forecasting method, is adopted to gen-
erate deterministic forecasts. Multiple sets of deterministic forecasts are
generated by using different machine learning algorithms with different
kernels in the first layer. Then, the forecasts are blended by another
machine learning algorithm in the second layer to generate the final
forecasts. Machine learning algorithms used in the M3 method include
artificial neural networks (ANNs), support vector regression (SVR),
GBMs, and random forests. Details about the M3 method can be found
in [21].

2.2. Multi-distribution database

A multi-distribution database is formulated to model the possible
shapes of the predictive distribution. Four widely used predictive dis-
tribution types are considered: Gaussian, Gamma, Laplace, and non-
central t distributions. Probability density functions (PDFs) of the four
distribution types are summarized in [22]. PDFs of the four distribu-
tions can be represented by the mean μ and standard deviation σ as
f x μ σ( | , ), and the corresponding cumulative distribution functions
(CDFs) can be deduced and denoted as F x μ σ( | , ).

2.3. Pinball loss-based optimization

Pinball loss is one of the most popular metrics for evaluating
probabilistic forecasts [20]; it is a function of observations and quan-
tiles of a forecast distribution. A smaller pinball loss value indicates
better probabilistic forecasting. The pinball loss value of a certain
quantile Lm is expressed as:

=
⎧
⎨
⎩

− × − <

× − ⩾
L q x

q x x q

x q x q
( , )

(1 ) ( ),

( ),
m m i

m
m i i m

m
i m i m

100

100 (1)

where xi represents the ith observation, m represents a quantile per-
centage from 1 to 99, and qm represents the predicted quantile. For a
given m percentage, the quantile qm represents the value of a random
variable whose CDF is m percentage. The quantiles of different dis-
tribution types are represented by a standard deviation σ , denoted as
q σ( )m . At the offline training stage where x’s are available, the optimal
standard deviation σ is determined by minimizing the pinball loss
summation of the 1st to 99th quantiles at each point, which is for-
mulated as follows:

∑
=

L q σ x

subject to

min ( ( ), )σ
m

m i
1

99

(2)

⩽ ⩽σ σ σl u

where σl and σu represent the lower and upper bounds of the unknown
standard deviation, which are selected based on the forecasting target
[23]. The genetic algorithm [24] is adopted in this paper to solve this
optimization problem. In this study, the maximum number of iterations
is set to be 100, and the iteration stops if the improvement is less than
0.001. The distribution with the minimum pinball loss is selected as the
predictive distribution shape. The optimal standard deviation’s esti-
mated using the training data are used to construct a surrogate model to
be used at the forecasting stage.

2.4. Surrogate model

To generate probabilistic forecasts, a pseudo-optimal standard de-
viation value is needed at every forecasting time point, which is esti-
mated by a surrogate model. Several possible surrogate model types can
be used, such as SVR, radial basis function, kriging, and ANN. SVR is
adopted in this paper because it is more accurate than other surrogate
models in the case studies. The surrogate model is constructed by fitting
the optimal standard deviation as a function of the deterministic fore-
casting value, which is expressed by:

̂ =σ f x( )p (3)

where xp is a point forecast, and f (·) is the SVR surrogate model of the
optimal standard deviation of the predictive distribution. This surrogate
model is used to estimate the standard deviation of the predictive dis-
tribution at the online forecasting stage.

3. Case studies and results

3.1. Data summary

The proposed pinball loss optimization-based probabilistic fore-
casting approach is applied to eight locations to generate wind speed
forecasts. The wind speed data were collected near hub height with 1-h
resolution [25]. The duration and measurement height of the collected
data at all locations are summarized in Table 1. For all locations, the
first 2/3 of data are used as training data, in which the first 11/12 is

Fig. 1. Overall framework of the pinball loss optimization-based probabilistic wind forecasting framework.
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used to train M3 and the remaining 1/12 of the training data is used to
build the SVR surrogate model of the optimal standard deviation. The
accuracy of the forecasts is evaluated by the remaining 1/3 of data.
Although the proposed method is capable of generating forecasts at
multiple forecasting horizons, only 1-h-ahead forecasts are explored in
this study.

3.2. Deterministic forecasting results

Standard metrics root mean square error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), normalized
RMSE (NRMSE), and normalized MAE (NMAE), are adopted to evaluate
the performance of deterministic forecasts. They are defined by:

̂
=

∑ −=RMSE
x x
n

( )i
n

i i1
2
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where ̂xi is the forecasted wind speed, xi is the actual wind speed, xmax

is the maximum actual wind speed, and n is the sample size.
For these metrics, a smaller value indicates better performance.

Deterministic forecasting errors using M3 at the selected locations are
summarized in Table 2. It is seen that the 1-h-ahead NMAE, NRMSE,
and MAPE are in the range of 3–5%, 4–7%, and 18–40%, respectively.
Two examples of the forecasts at the C2 and C5 sites from 2012-02-01
to 2012-02-04 are illustrated in Figs. 2 and 3, respectively. The

persistence (PS) method is used as a baseline, and the forecasting errors
are also summarized in Table 2. Overall, the accuracies of the M3 de-
terministic forecasts are better than those of persistence forecasts, ex-
cept C3. The smallest NMAE, NRMSE, and MAPE at C3 are produced by
the model using the persistence method. This is mainly because C3 has
less wind speed variance.

3.3. Surrogate model accuracy

SVR is adopted in this paper to build the surrogate model of the
optimal predictive distribution parameter (i.e., standard deviation). The
NMAE and NRMSE of surrogate modeling are summarized in Table 3. A
smaller NMAE/NRMSE value indicates better performance. It is ob-
served that the NMAE and NRMSE are in the range of 5–9% and 8–14%,
respectively. Overall, the accuracy of the SVR surrogate model is sa-
tisfactory.

3.4. Pinball loss optimization results

Pinball loss values with different predictive distributions are sum-
marized in Table 4. The sum of pinball loss is averaged over all quan-
tiles from 1% to 99% and normalized by the maximum wind speed at
each site. A lower loss score indicates a better probabilistic forecast.
Table 4 shows that the M3-Laplace with pinball loss optimization (M3-
Laplace) has the smallest pinball loss value at all locations except C3.
The smallest pinball loss at C3 is produced by the model using Laplace
distribution with the persistence method (PS-Laplace). This is mainly
because that the persistence deterministic forecasts are more accurate
than the M3 forecasts at this location. The models of quantile regression,
PS-Laplace with pinball loss optimization, and M3-Laplace without pinball
loss optimization (M3-Laplace-w) are used as benchmark models in case
studies. The reasons for choosing these three baselines are: (i) quantile re-
gression is a widely used method in probabilistic forecasts; (ii) the PS-La-
place method allows us to explore the impacts of point forecasts on this two-
step probabilistic forecasting framework; (iii) the M3-Laplace-w method
allows us to explore the effectiveness of pinball loss optimization. Results
show that the M3-Laplace model has improved the pinball loss by up to
35% compared to the three benchmark models and M3 forecasts with
other predictive distributions (i.e., M3-Gaussian, M3-Gamma, and M3-
Noncentral T (M3-ncT)). Therefore, the Laplace distribution is finally
chosen to generate probabilistic wind speed forecasts. Note that the
models of M3-Gaussian, M3-Gamma, and M3-Laplace perform simi-
larly, which indicates that the optimization can help achieve better
accuracies with different predictive distribution types. For the baseline
model of M3-Laplace-w, a random standard deviation value is selected
within the range between the minimum and maximum values of the
optimal σ . We repeat this process 30 times to obtain an average sum of
pinball loss without optimization.

3.5. Probabilistic forecasting results

With estimated scale parameters through pinball loss minimization
and surrogate modeling, predictive wind speed distributions are de-
termined and the quantiles …q q q, , ,1 2 99 can be calculated. To better
visualize probabilistic forecasts, the 99 quantiles are converted into
nine prediction intervals Iβ (β =10,… ,90) in a 10% increment.
Figs. 2(a) and 3(a) show two examples of probabilistic wind speed
forecasts at the C2 and C5 site from 2012-02-01 to 2012-02-04. The
width of the prediction interval varies with the wind speed variability.
When the wind speed fluctuates frequently, the prediction interval
tends to be wider, and thereby the uncertainty in wind speed forecasts
is relatively higher. Figs. 2(b) and 3(b) show probabilistic forecasts
generated from the baseline quantile regression method at the same
sites and time periods. The prediction intervals of the proposed M3-
Laplace method are narrower than those of the quantile regression
method. Thus, there is less uncertainty in the M3-Laplace probabilistic

Table 1
Data duration at selected sites.

Case No. Site Data duration Height (m)

C1 Boulder_NWTC 2009-01-02 to 2012-12-31 80
C2 Megler 2010-11-03 to 2012-11-01 53.3
C3 CedarCreek_H06 2009-01-02 to 2012-12-31 69
C4 Goodnoe_Hills 2007-01-01 to 2009-12-31 59.4
C5 Bovina50 2010-10-10 to 2012-10-08 50
C6 Bovina100 2010-03-03 to 2012-03-01 100
C7 CapeMay 2007-09-26 to 2009-09-24 100
C8 Cochran 2008-06-30 to 2011-06-29 70

Table 2
Deterministic forecasting results using M3 and PS.

Method Metric Site

C1 C2 C3 C4 C5 C6 C7 C8

M3 MAE (m/s) 1.32 0.69 1.26 0.99 1.03 1.10 0.94 0.78
NMAE (%) 4.77 2.89 3.86 3.72 4.89 4.47 3.45 3.98
RMSE (m/s) 1.93 0.96 1.78 1.35 1.37 1.53 1.31 1.06
NRMSE (%) 6.95 3.99 5.48 5.10 6.54 6.22 4.81 5.41
MAPE (%) 0.40 0.21 0.18 0.19 0.24 0.18 0.27 0.19

PS MAE (m/s) 1.38 0.84 1.20 1.02 1.10 1.15 0.98 0.85
NMAE (%) 4.97 3.51 3.69 3.85 5.27 4.69 3.59 4.37
RMSE (m/s) 2.00 1.17 1.65 1.40 1.48 1.59 1.36 1.16
NRMSE (%) 7.23 4.87 5.08 5.27 7.04 6.46 4.98 5.92
MAPE (%) 0.41 0.24 0.17 0.20 0.25 0.20 0.29 0.23
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wind forecasts.
In addition to pinball loss, two more standard metrics, i.e., sharp-

ness and reliability, are used to assess the probabilistic forecasting ac-
curacy.

3.5.1. Sharpness
Sharpness indicates the capacity of a forecasting system to forecast

wind power with extreme probability [26]. The sharpness is measured
by the average size of the prediction intervals. The sharpness of the
proposed M3-Laplace model, quantile regression, M3 with other dis-
tribution types, and M3-Laplace-w at the eight sites are compared in
Fig. 4. The sharpness of the pinball loss-based forecasts is better than
that of the baseline quantile regression model. Also, the expected in-
terval size increases with increasing nominal coverage rate, and the M3-
Laplace has much better sharpness than that of the M3-Laplace-w. The
interval size of the M3-Laplace forecasts ranges from 2% to 18%, which
indicates low sharpness.

3.5.2. Reliability
Reliability (RE) stands for the correctness of a probabilistic forecast

that matches the observation frequencies [27]. A reliability plot shows
whether a given method tends to systematically underestimate or
overestimate the uncertainty. In this study, the nominal coverage rate
ranges from 10% to 90% with a 10% increment. Fig. 5 shows the re-
liability plots of the probabilistic forecasts at the eight test sites. A
forecast presents better reliability when the curve is closer to the di-
agonal. Fig. 5 shows that overall quantile regression has better relia-
bility performance, because the confidence band of QR is much wider
than that of the proposed M3-Laplace method. A wider confidence band
indicates that the result takes more errors into consideration; however,

note that the reliability over the 90th confidence interval is similar
between M3-Laplace and the quantile regression, which is generally
more important in probabilistic forecasting applications in power
system operations. Also, the M3-Laplace has much better reliability
than M3-Laplace-w at all selected locations, which indicates the effec-
tiveness of the pinball loss optimization.

Fig. 2. M3-Laplace and quantile regression forecasts at the C2 site.

Fig. 3. M3-Laplace and quantile regression forecasts at the C5 site.

Table 3
NMAE and NRMSE of the SVR surrogate model.

Metrics Site

C1 C2 C3 C4 C5 C6 C7 C8

NMAE (%) 8.57 5.26 8.64 7.82 6.89 7.50 6.87 7.84
NRMSE (%) 13.48 8.16 13.27 11.51 10.13 11.15 10.64 11.96

Table 4
Normalized optimal averaged sum of pinball loss.

Model Site

C1 C2 C3 C4 C5 C6 C7 C8

QR 2.22 1.76 2.03 1.96 2.56 2.44 1.95 1.68
M3-Gaussian 1.74 1.26 1.44 1.36 1.86 1.69 1.27 1.59
M3-Gamma 1.74 1.26 1.43 1.36 1.87 1.69 1.27 1.58
M3-Laplace 1.72 1.25 1.43 1.35 1.85 1.63 1.26 1.57
M3-ncT 1.74 1.81 2.20 2.21 2.68 3.41 2.56 2.86
M3-Laplace-w 2.94 2.93 2.40 2.39 3.53 3.08 2.46 2.72
PS-Laplace 1.81 1.29 1.34 1.38 1.92 1.70 1.32 1.64

Note: The smallest normalized optimal sum of pinball loss at each location is in
boldface.
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3.6. Relationship between deterministic and probabilistic forecasts

Because the proposed method is a two-step probabilistic forecasting
approach, it is interesting to explore the inherent relationship between

the first deterministic forecasting step and the second probabilistic
forecasting step. To this end, the relationship between a deterministic
forecasting metric and a probabilistic forecasting metric is quantified.

NMAE is used to represent the deterministic forecasting accuracy,

Fig. 4. Sharpness of probabilistic forecasts at selected sites.
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and normalized pinball loss (NPL) is used to represent the performance
of probabilistic forecasts. To generate different NMAE and NPL sce-
narios, four single machine learning algorithms—i.e., ANN, SVR, GBM,
and RF with different kernels are used to produce 14 deterministic

forecasts, including:

• Three SVR models with linear (SVR_l), polynomial (SVR_p), and
radial base (SVR_r) kernels;

Fig. 5. Reliability of probabilistic forecasts at selected sites.
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• Five ANN models with different numbers of hidden layers (nl),
neurons in each layer (no), and weight decay parameter (nd) values.
Our selected models employ the feed-forward back propagation
learning function and sigmoid activation function;

• Four GBM models based on different loss functions (Gaussian and
Laplacian) and parameters, i.e., number of trees, learning rate (λ),
maximum depth of variable interactions, and minimum number of
observations in the terminal nodes;

• Two random forest models with different numbers of variables that
are randomly sampled as candidates at each split.

The proposed pinball loss optimization method with Laplace dis-
tribution is used to generate probabilistic forecasts. The NMAE values of
the 14 deterministic forecasts and their corresponding NPL of prob-
abilistic forecasts are summarized in Table 5. A linear regression
method [28] is used to fit the relationship between NMAE and NPL.
Fig. 6 shows the relationship between NMAE and NPL at the eight sites.
A linear relationship is observed between NMAE and NPL at all test
locations, which indicates that a better deterministic forecast model
will very likely result in a more accurate probabilistic model with the
proposed two-step method. The R2 values of the eight locations of the
linear least squares fit are listed in Table 6. The R2 values are close to 1,
which also indicates the strong correlation between the deterministic
and probabilistic forecasting steps.

4. Conclusion

This paper developed a two-step probabilistic wind forecasting
method based on pinball loss optimization, in conjunction with a multi-
model deterministic forecasting framework. Different types of pre-
dictive distributions were compared, and the Laplace distribution was
found to be the most suitable predictive distribution type. The optimal
shape parameter (i.e., standard deviation) of the predictive distribution
was determined by minimizing the sum of pinball loss in the training

stage. A surrogate model of the optimal shape parameter was used to
estimate a pseudo-optimal shape parameter in the forecasting stage.
Results showed that the M3-Laplace model could reduce the pinball loss
score metric by up to 35% compared to benchmark models. Also, M3-
Laplace showed better reliability than that of the M3-Laplace-w, which
indicates the effectiveness of the pinball loss optimization. The sharp-
ness intervals size of the M3-Laplace forecasts ranges from 2% to 18%,
which indicates low sharpness.

Results also showed a linear relationship between the deterministic
forecasting metric (i.e., NMAE) and the probabilistic forecasting metric
(i.e., NPL). This indicates that a better deterministic model will very
likely result in a more accurate probabilistic model with the developed
framework.

The potential future work will (i) quantitatively evaluate the fore-
casting performance by considering spatial-temporal effects, and (ii)
study how to aggregate probabilistic forecasts of multiple wind loca-
tions.
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Table 5
One-hour-ahead forecasting NMAE and NPL of single-algorithm models with different kernels.

Method Metrics Site

C1 C2 C3 C4 C5 C6 C7 C8

SVR_r NMAE (%) 5.101 3.114 6.229 3.799 5.145 4.554 3.662 4.014
NPL 1.845 1.381 2.606 1.372 1.974 1.655 1.360 1.974

SVR_l NMAE (%) 4.765 2.886 3.927 3.718 4.891 4.466 3.449 3.984
NPL 1.723 1.253 1.468 1.350 1.853 1.627 1.261 1.853

SVR_p NMAE (%) 4.772 2.919 4.267 3.734 4.913 4.572 3.553 4.009
NPL 1.727 1.270 1.592 1.352 1.859 1.662 1.296 1.859

ANN1 NMAE (%) 4.793 2.921 4.155 3.738 4.936 4.671 3.717 4.007
NPL 1.721 1.267 1.580 1.353 1.874 1.690 1.356 1.874

ANN2 NMAE (%) 4.789 2.938 4.042 3.735 4.939 4.536 3.560 4.012
NPL 1.722 1.275 1.524 1.352 1.874 1.650 1.293 1.873

ANN3 NMAE (%) 4.817 2.927 4.096 3.738 4.932 4.494 3.502 4.017
NPL 1.729 1.270 1.549 1.354 1.875 1.636 1.281 1.875

ANN4 NMAE (%) 4.792 2.906 4.022 3.735 4.924 4.481 3.500 4.005
NPL 1.722 1.264 1.504 1.351 1.873 1.629 1.281 1.873

ANN5 NMAE (%) 4.793 2.902 3.859 3.727 4.899 4.487 3.480 4.006
NPL 1.719 1.260 1.431 1.349 1.861 1.628 1.274 1.861

GBM1 NMAE (%) 4.822 2.945 4.468 3.739 4.961 4.479 3.562 4.022
NPL 1.733 1.284 1.731 1.351 1.872 1.629 1.300 1.873

GBM2 NMAE (%) 4.808 2.941 4.474 3.736 4.963 4.478 3.550 4.020
NPL 1.735 1.283 1.732 1.350 1.872 1.631 1.295 1.872

GBM3 NMAE (%) 4.806 2.936 4.730 3.768 4.969 4.491 3.504 4.002
NPL 1.743 1.285 1.860 1.360 1.882 1.628 1.291 1.882

GBM4 NMAE (%) 4.845 2.946 4.348 3.754 4.974 4.544 3.554 4.023
NPL 1.742 1.282 1.671 1.357 1.878 1.650 1.302 1.878

RF1 NMAE (%) 4.965 3.060 4.207 3.883 5.115 4.703 3.715 4.159
NPL 1.796 1.338 1.577 1.407 1.941 1.701 1.357 1.941

RF2 NMAE (%) 4.920 3.012 4.221 3.852 5.057 4.637 3.659 4.110
NPL 1.777 1.312 1.596 1.393 1.913 1.681 1.336 1.913

Note: The smallest NMAE (%) at each location is in boldface. The smallest NPL at each location is in italic.
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Table 6
R-square of the least square fit.

Site C1 C2 C3 C4 C5 C6 C7 C8

R2 0.97 0.98 0.99 0.98 0.95 0.99 0.95 0.99
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