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Abstract—In this paper, an aggregated probabilistic wind
power forecasting method by considering spatio-temporal effects
is proposed, which consists of three major components: Q-
learning enhanced deterministic forecasting, marginal distribu-
tion fitting, and aggregated probabilistic wind power forecasting.
A high-dimensional joint distribution is used to model the spatio-
temporal correlation among the member wind farms through
Copula, where the marginal distributions are built from historical
aggregated wind power observations and forecasts from member
wind farms. Then, a conditional distribution of the aggregated
wind power is deduced through the Bayesian theory, which is
used for aggregated probabilistic forecasts. Numerical results
of a 3 wind farms case study show that the performance of
the aggregated probabilistic wind power forecasting is enhanced
by considering the spatio-temporal correlation among individual
wind farms.

Index Terms—probabilistic wind forecasting, aggregated prob-
abilistic forecasting, copula, pinball loss, spatio-temporal corre-
lation.

I. INTRODUCTION

The uncertain and variable nature of wind makes it chal-
lenging to be integrated into power systems, particularly at
ever-increasing level of wind penetration. Studies have shown
that the integration of geographically dispersed wind farms
could reduce extreme power output, which is referred to as
smoothing effect [1]]. In addition, power produced from one
wind farm at different times is typically temporally correlated
[2]]. It would be interesting to explore the impacts of spatio-
temporal correlation on the performance of wind forecasting.
The benefits of spatio-temporal modeling for wind power
forecasting at aggregated levels have been briefly discussed
in [3].

A number of wind power forecasting technologies that
considers spatio-temporal effects have been developed in the
literature and also applied to a variety of power system
operation and planning problems. For example, He et al.
[4] used finite-state Markov chains to account for the non-
stationary and periodicity of wind power generation across
multiple years between different wind farms. The developed
wind power forecasts was used in stochastic unit commitment
and economic dispatch models. Xie et al. [3]] leveraged the
spatio-temporal correlation in wind speed and direction among
geographically dispersed wind farms to generate wind power
forecasts. Probabilistic wind forecasting technologies based
on spatio-temporal effects have also been developed in the
literature. For example, Zhang et al. used off-site information

of geographically dispersed wind farms to capture spatio-
temporal correlation and generated quantile forecasts. Then an
Alternating Direction Method of Multipliers (ADMM)-based
method was used to generate distributed probabilistic fore-
casts. Dowell et al. [6] proposed a probabilistic wind power
forecasting method and the spatio-temporal correlation was
captured through Sparse Vector Autoregression. In addition
to wind power, spatio-temporal correlation modeling has also
been applied to wind speed forecasting [7] and solar power
forecasting [8].

One of the most intuitive ways of modeling spatio-temporal
correlation is to use a joint distribution. Based on the Sklar’s
theorem, the joint distribution can be modeled through univari-
ate marginal-distribution functions and a Copula that describes
the dependence structure between the variables [9]]. By mod-
eling and considering the spatio-temporal correlation between
different wind farms, this paper develops a conditional aggre-
gated probabilistic wind power forecasting model based on the
Copula theory. First, deterministic wind power forecasts are
generated for member wind farms (with selected deterministic
forecasting methods). Second, a Copula method is used to
build a spatio-temporal correlated joint model between the
aggregated wind power and forecasted wind power of each
wind farm. The conditional distribution of aggregated wind
power is deduced through Bayesian theory, which is then
used (in conjunction with deterministic forecasts) to generate
probabilistic wind power forecasts at the forecasting stage.

The rest of the paper is organized as follows. Section
describes the proposed aggregated probabilistic forecast-
ing method, which consists of a deterministic forecasting
method, marginal probability distribution selection, and a
spatio-temporal correlation based Copula model. Section
applies the developed spatio-temporal correlation based ag-
gregated probabilistic wind power forecasting method to three
wind farms. Concluding remarks and future work are discussed
in Section

II. METHODOLOGY

The overall framework of the aggregated probabilistic
wind power forecasting methodology by considering spatio-
temporal correlation is illustrated in Fig. [T} which consists of
three major steps: Q-learning enhanced deterministic forecast-
ing, marginal distribution fitting, and aggregated probabilistic
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Fig. 1: The Overall framework of the developed aggregated probabilistic wind power forecasts

wind power forecasting. The three major steps are briefly
described as follows:

1) Step 1: A Q-learning based ensemble deterministic fore-
casting method is used to select the best forecasting
model from a pool of state-of-the-art machine learning
based forecasting models at each time step, thus gener-
ating deterministic wind power forecasts for all member
wind farms.

2) Step 2: A number of selected probability distribution
types are used to fit the probability distribution functions
(PDFs) of historical aggregated actual wind power and
the wind power forecasts at each wind farm.

3) Step 3: Based on the Copula theory, the joint distri-
bution of historical aggregated actual wind power and
wind power forecasts at each member wind farm is
constructed.

A. Q-learning Enhanced Deterministic Forecasting

The developed spatio-temporal correlation based aggregated
probabilistic forecasting methodology is constructed based
on deterministic forecasts. A large collection of methods
have been done to effectively perform deterministic wind
forecasting. However, most of existing deterministic methods

are either selected based on the overall performance or en-
sembled by multiple models. Selecting a model based on the
overall forecasting performance generally neglects the local
performance of the selected model.

In this paper, a Q-learning enhanced deterministic forecast-
ing method is adopted, which can choose the best forecasting
model from a pool of state-of-the-art machine learning based
forecasting models (i.e., artificial neural network, support vec-
tor machine, gradient boosting machine, and random forest)
at each time step. To be more specific, the developed method
trains Q-learning agents based on the rewards of transferring
from the current model to the next model. For example, a Q-
learning agent will receive a reward by transferring from the
current forecasting model M; to the next forecasting model
M; in each training step, from which the Q-learning agent
will learn the optimal policy of the model selection. Then,
this optimal policy will be applied to select the best model
for forecasting in the next step based on the current model in
the forecasting stage. The dynamic model selection process is
expressed as:

S = {8} = {Slas2a "'751} (1)
A = {a} = {al,ag, ...,aI} (2)
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where S, A, and R are state space, action space, and reward
function in the dynamic model selection Markov Decision
Process, respectively. s and a are possible state and action,
respectively. I is the number of models (M) in the model
pool. The reward function is defined as the model perfor-
mance improvement, which ensures the effective and efficient
convergence of Q-learning. More details about the Q-learning
enhanced deterministic forecasting can be found in Ref. [10].

R'(si,a;) = ranking(M;) — ranking(M;)

B. Spatio-temporal Correlation Modeling Among Wind Farms

Copula theory is one of the most widely used methods
for modeling dependency between different random variables,
which is adopted in this paper for spatio-temporal correlation
modeling. A multi-distribution database is formulated to model
the possible shapes of the predicted wind power distribution,
which consists of 5 distribution types: Gaussian, Gamma,
Logistic, Rayleigh, and kernel density estimation (KDE). The
aggregated actual wind power p* can be expressed as follows:

N
pe = sz'
i=1

where p; is the actual wind power of the ith wind farm,
and N is the total number of wind farms to be aggregated.
The parameter p; denotes the corresponding forecasted wind
power, and f(p;) denotes the marginal PDF of the forecasted
wind power at the ith wind farm. Similarly, F(p;) denotes
the marginal cumulative distribution function (CDF) of the
forecasted wind power at the ith wind farm. In the Copula
theory, the joint CDF of the predicted wind power at different
member wind farms and the aggregated actual wind power (of
all farms), F(p~,p1,...,Pn), can be modeled through their
marginal CDFs and a Copula function, which is expressed by:

F(p™,p1,....bn) = C(F(p”), F(p1), . F(bn))  (5)

where C(+) is the Copula function. Similarly, the joint PDF of
the forecasted wind power at different member farms and the
aggregated actual wind power (of all farms) is expressed as:
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(6)
where the marginal PDF is modeled through the aforemen-
tioned 5 different distribution types based on historical actual
and forecasting data. Therefore, the conditional joint PDF of
the aggregated wind power given all the member farm power
forecasts could be deduced from Bayesian theory, given by

c(F(p™), F(p1), ---F(pn))
(F(p1), - F(pn)
The conditional distribution of aggregated wind power given
all the member forecasts can be trained through historical
actual and forecasting data. Based on the copula model and
trained conditional PDF in Eq.[7} scenarios of aggregated wind
power can be generated.
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Aggregated probabilistic wind power forecasts are generated
by sampling from the conditional distribution given deter-
ministic forecasts of each wind farm. An inverse transform
method is used to sample from the conditional distribution to
generate a large number of aggregated wind power forecasting
scenarios.

III. CASE STUDY AND RESULTS
A. Data Summary

The developed spatio-temporal correlation based probabilis-
tic forecasting approach is applied to three wind farms for
aggregated wind power forecasting. The wind power data is
collected from the Wind Integration National Dataset (WIND)
Toolkit with a 1-hour resolution [11]]. The duration of the
collected data is summarized in Table [l For all the 3 wind
farms, the first 3/4 of data is used as training data. The
correlation matrix based on the training data is visualized in
Fig. 2] It is seen that the forecasted wind power of each
wind farm and the aggregated wind power (of all the 3
farms) is highly correlated. The number of scenarios generated
from the conditional distribution is set as N,=5,000. The
accuracy of the forecasts is evaluated by the remaining 1/4 of
data. Although the developed method is capable of generating
forecasts at multiple forecasting horizons, only 1-hour-ahead
(1HA) forecasts are generated in this study.

TABLE I: Data summary of the selected sites in WIND Toolkit

Case No.  Site ID Data duration Capacity (MW)
Cl 10069 2010-01-01 to 2012-12-31 16
Cc2 10526 2010-01-01 to 2012-12-31 16
C3 10527 2010-01-01 to 2012-12-31 2
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Fig. 2: Correlation matrix between aggregated wind power and
forecasted wind power of each wind farm

B. Comparison of Different Marginal Distribution Models

Fig. [3] shows the marginal probability distributions of wind
power forecasts from five distribution types at the C3 site. The



Akaike information criterion (AIC) and the Log-Likelihood
(LL) are used to evaluate the estimated wind power distribution
accuracy. The preferred model is the one that has the lowest
AIC and the biggest LL [12]. The AIC and LL values of
the three wind farms with different distribution types are
summarized in Table [[Il Results show that the KDE distribu-
tion outperforms other single distributions for modeling wind
power forecasts. Therefore, the estimated distribution through
KDE is used as marginal distribution of the Copula model.
The CDF F corresponding to the estimated PDF is expressed
as:

[ 1 = P —DPm
Fp) = 3 o=

5 ()

m=1

where h is the bandwidth, ¢ is the CDF of the kernel, and M
is the number of kernels.
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Fig. 3: Probability distributions of wind power forecasts at the
C3 site

TABLE II: Information criteria of the estimated distribution

Model Cl1 C2 c3

AIC LL AIC LL AIC LL
Gaussian 27450  -13720 | 27140 -13570 | 8859  -4428
Gamma 26010 -13010 | 25940 -12970 | 7523  -3759
Logistic =~ 27960 -13980 | 27620 -13810 | 9298  -4647
Rayleigh 29910 -14950 | 29130 -14570 | 11250 -5624
KDE 21900 -12100 | 22180 -11980 | 6864 -3310

Note: The best information criterion at each location is in boldface.

C. Deterministic Forecasting Results

Standard metrics of root mean squared error (RMSE), mean
absolute error (MAE), and their corresponding normalized
indices, i.e., NMAE and NRMSE, are adopted to evaluate
the deterministic forecasting performance. For these metrics,
a smaller value indicates better performance. Deterministic
forecasting errors using Q-learning at the selected locations are
summarized in Table It is shown that the 1HA forecasting

NMAE and NRMSE are in the ranges of 6%-7% and 10%-
11%, respectively. The persistence method (PS) is used as a
baseline. The percentage improvement of NMAE and NRMSE
by the Q-learning model are in the ranges of 3%-4% and 5%-
7%, respectively, over the PS benchmark method.

TABLE III: 1HA deterministic forecasting performance using
Q-learning and PS methods

Method Site CI 2 C3

Qlcaming  MAE(%) — 670 674 685
NRMSE(%) 11.00 10.66 10.72

PS NMAE(%) 693  7.03 7.1
NRMSE(%) 11.76 1143 11.39

D. Probabilistic Forecasting Results

With the KDE-based wind power marginal distributions, a
joint distribution between the aggregated wind power (of all
the farms) and the forecasted power of each member is de-
termined. The conditional distribution of the aggregated wind
power given forecasts of each member can be calculated. This
conditional distribution is used to generate aggregated wind
power forecasting scenarios. To better visualize probabilistic
forecasts, a large number of wind power forecasting scenarios
(i.e., 5000) is shown in Fig. E from 2012-07-05 to 2012-
07-09. It is observed that for all the representative periods,
the aggregated wind power reasonably lies in the scenario
intervals.
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Fig. 4: Aggregated probabilistic wind power forecasts

1) Pinball Loss: Pinball loss is a widely used metric to
evaluate the overall performance of probabilistic forecasts,
which is defined by:

m

(1= =) X (Gmyt —Dt), Pt <qmy
Lm,t(Qm,tvpt) = 1991
100 X (Pt = Gmyt)s Pt = Gmit
9

where ¢,, ; represents the mth quantile at time ¢. A smaller
pinball loss value indicates better forecasting performance.
Numerical summation (NS) of the quantiles from individual
wind farms is used as the baseline method for comparison.
The quantile forecasts of individual wind farms are generated
by quantile regression. Results show that the normalized pin-
ball loss of the developed aggregated method by considering
spatio-temporal correlation (i.e., 4.04) is smaller than the NS
from quantile regression (i.e., 5.42).



2) Reliability: Reliability (RE) stands for the correctness of
a probabilistic forecast that matches the observation frequen-
cies [13]:
gl-a)

E =
R N

(1—-a)| x 100% (10)
where N is the number of test samples, and 5(1*0‘) is the
number of times that the actual test samples lie within the ath
prediction interval. A reliability plot shows whether a given
method tends to systematically underestimate or overestimate
the uncertainty. In this study, the nominal coverage rates range
from 10% to 90% with a 10% increment. The blue curve
in Fig. [5] shows the reliability of the aggregated probabilistic
forecasts. A forecast presents better reliability when the curve
is closer to the diagonal. Overall the reliability of the devel-
oped method is better than the baseline NS method, especially
over the 90th confidence interval, which is important in power
system operations.

3) Sharpness: Sharpness indicates the capacity of a fore-
casting system to forecast extreme probabilities [13]. This
criterion evaluates the predictions independently of the obser-
vations, which gives an indication of the level of usefulness
of the predictions. For example, a system that provides only
uniformly distributed predictions is less useful for decision-
making under uncertainty. Predictions with perfect sharpness
are discrete predictions with a probability of one (i.e., de-
terministic predictions). The sharpness is measured by the
average size of the predictive intervals. The sharpness of the
aggregated probabilistic forecasting is shown by the orange
curve in Fig.[5] Overall, the sharpness of the developed method
ranges from 2% to 45%, which is smaller than the sharpness
of the the baseline NS method.
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Fig. 5: Reliability and sharpness of the aggregated probabilistic
wind power forecasts and baseline NS forecasts

IV. CONCLUSION

In this paper, a spatio-temporal correlation based aggregated
probabilistic wind power forecasting method was developed, in

conjunction with a Q-learning based deterministic forecasting
method. The Copula method was used to build the spatio-
temporal related joint distribution of the aggregated wind
power and the forecasted power of each member wind farm.
Different shapes of marginal distributions of wind power were
tested and compared, including Gaussian, Gamma, Logistic,
Rayleigh, and KDE distributions. The conditional distribution
was deduced and used for generating aggregated probabilistic
wind power forecasts. We found that the KDE distribution
present the best marginal distribution shape. Results of the case
study showed that the developed aggregated probabilistic fore-
casting method could provide reliable probabilistic forecasts
by utilizing spatio-temporal correlations among individual
wind farms. Different mixed models will be explored in future
work to simulate the marginal wind power distribution.
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