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a b s t r a c t

With the rapid growth of wind power, managing its uncertainty and variability becomes critical in power
system operations. Wind forecasting is one of the enablers to partially tackle challenges associated with
wind power uncertainty. To improve the ‘forecasting ability’, defined as forecastability, different fore-
casting methods have been developed to assist grid integration of wind energy. However, forecasting
performance not only relies on the power of forecasting models, but is also related to local weather con-
ditions and (known as wind characteristics) wind farm properties. In this study, geospatial and instance
spatial distributions of sixwind characteristics and two forecasting errormetrics arefirst analyzedbasedon
126,000þwind sites in the United States. Forecasts in different look-ahead times are generated by using a
machine learning based multi-model forecasting framework and the Weather Research and Forecasting
model. A forecastability quantification method is developed by characterizing the relationship between
forecastability and wind series entropy using three regression methods, i.e., linear approximation, locally
weighted scatterplot smoother nonlinear nonparametric regression, and quantile regression. It is found
that the forecastability of a wind site can be successfully characterized by wind series characteristics,
thereby providing valuable information at different stages of wind energy projects.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Wind power has captured considerable attention from re-
searchers, utilities, and energy policymakers in recent years due to
its rapid growth. Wind energy had 54.6 GW global capacity addi-
tions in 2016, reaching a cumulative capacity of more than
486.8 GWand 7% of the total power capacity in the world [1]. In the
U.S., there are over 53,000 wind turbines operating, generating
more than 84.1 GWof power across 41 states. Currently, a combined
20.9 GWof wind capacity is under construction in the United States
according to the American Wind Energy Association [1]. However,
the uncertain and variable characteristics of wind pose challenges
to further increases in wind penetration. These challenges can be
partially addressed by improving the accuracy of wind speed and
power forecasting.

The ‘forecasting ability’ of a time series is defined as the fore-
castability (or predictability in some literature) [2,3]. Forecast-
ability is of great importance to power system individuals, such as
independent power producers (IPPs). This is because IPPs have
limited experiencewith wind power forecasting but are required to
provide wind forecasting (also known as decentralized wind power
forecasts) in different look-ahead times to power purchasers and
grid operators [4]. Ideally, IPPs are paid at the market clearing price
for the amount of energy they supply. However, low-forecastability
wind farms can have large deviations between the wind forecasts
and actual outputs, which will be subjected to penalties for these
forecast errors [5]. In addition to the imbalance costs, higher fore-
castability can help IPPs to better schedule maintenance [6]. The
forecastability also concerns regional transmission organizations
(RTOs)/independent system operators (ISOs) by (i) assisting to
reduce reserve requirements, therefore achieving economic savings
[7,8]; and (ii) optimizing the commitment and dispatch of thermal
units to minimize production costs [9]. From the wind farm de-
velopers' perspective, the forecastability of a potential wind farm is
a critical factor during the wind farm design [10].

The forecastability of a wind time series is influenced by
different factors, such as learning power of the forecasting models
and the time series characteristics (e.g., local weather conditions
and wind farm properties). A number of studies have analyzed the
forecastability by error distributions and spatio-temporal
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Table 1
Case study summary.

State ISO/RTO No. of wind sites in WIND Toolkit Wind penetration (by 2016)

Texas ERCOT 7,869 12.6%
Oklahoma SPP RTO 4,280 25.1%
Wyoming N/A 8,196 9.4%
Kansas SPP RTO 4,154 29.6%
New York NYISO 2,859 2.9%

Note: ERCOT - Electric Reliability Council of Texas, SPP RTO - Southwest Power Pool Regional Transmission Organization, NYISO - New York ISO.

Fig. 1. Instance space of the wind sites of the entire WIND Toolkit and case studies. (a) Scatterplot in a 3D instance space; (b) PC1 vs: PC2 in a 2D instance space; (c) PC1 vs: PC3 in a
2D instance space; (d) PC2 vs: PC3 in a 2D instance space.
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correlations. For example, spatio-temporal patterns of wind power
forecasting errors in Denmark were proved to exist in Ref. [11].
Wind power forecasting error distributions were examined and
compared in Refs. [12] and [13]. However, the aforementioned
research didn't explore the forecasting errors and forecastability in
conjunction with the forecasting process. Many studies tried to
improve the forecastability by developing forecasting models (e.g.,
artificial neural networks [14], random forests [15], and Takagi-
Sugeno fuzzy models [16,17]) with better learning power, which
can be referred in review papers [18e21]. These forecasting
methods are categorized based on different criteria (e.g., look-
ahead times [22], algorithm principles, and input data [23]). With
the development of big data analytics and machine learning, wind
forecasting (especially short-term wind forecasting) has been
significantly improved. Among different statistical models for
short-term wind forecasting, ensemble models and deep learning
models have been found to perform better than single-algorithm
machine learning models [24e26]. Though these powerful ma-
chine learning methods are helpful for wind forecasting, the fore-
castability is largely affected by other factors, such as local weather
conditions and wind farm properties. In this paper, we seek to
quantify the forecastability of a wind farm and also investigate the
impacts of local weather conditions (i.e., nonlinearity, spectral en-
tropy, and mean wind speed) and wind farm properties (i.e., mean
absolute gradient of 1-h wind power series, meanwind power, and
capacity factor) on the forecatability, using the data of over 126,000
wind sites in the U.S. The relationships between the forecastability
in different look-ahead times and the local weather conditions/



Fig. 2. The minimum convex polytope of the entire WIND Toolkit dataset and five study cases. The color bar indicates the value of Div. The Div values are 23.51, 9.30, 5.89, 16.79, 3.61,
and 11.15 with respect to datasets of the WIND Toolkit dataset (the entire U.S.), TX, OK, WY, KS, and NY, respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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wind farm properties are characterized. The main innovations and
contributions of this paper include:

(i) Analyzing wind power time series characteristics of over
126,000 wind sites in the United States;

(ii) Performing wind power forecasting in different look-ahead
times by the machine learning based multi-model fore-
casting framework and the Weather Research and Fore-
casting model;

(iii) Characterizing and quantifying the forecastability of wind
sites based on wind power time series characteristics.

The remainder of the paper is organized as follows. Section 2
briefly describes the analyzed dataset and quantifies the data di-
versity. Geospatial and instance spatial distributions of local
weather conditions, wind farm properties, and forecasting errors
are analyzed in Section 3. Section 4 quantifies the forecastability of
the wind sites based on different wind characteristics. Section 5
provides the concluding remarks.

2. Data description and pre-analysis

A large and diverse dataset is required to ensure the generality
of this study. Thus, the Wind Integration National Dataset (WIND)
Toolkit, the largest publically available wind dataset developed for
the next generation grid integration studies, is adopted in this pa-
per. The WIND Toolkit includes a meteorological dataset, wind
power time series, and wind power forecasts generated by the
Weather Research and Forecasting (WRF) Model. TheWIND Toolkit
power data was simulated at 100 m hub height. It covers
126,000þ locations with a 5-min resolution, spanning 2007
through 2013 [27]. Some critical wind power features, such as
ramping characteristics, spatial and temporal correlations, wind
plants' capacity factors, and time synchronized with load profiles,
are represented in the WIND Toolkit.

The wind power time series and NWP forecasts at different



Fig. 3. Flowchart of the M3 method. The recursive feature elimination (RFE) is adopted in the deep feature selection (DS) module to carry out feature selection in the first layer and
model selection in the second layer. Im is the input to themth single classification and regression tree (CART) in the RFS. sLm is the random vector to extract the bootstrap sample. R2

and RMSE are coefficient determination and root mean square error, which are used to evaluate the RF model performance. Ii is a feature vector.

Fig. 4. Geospatial distributions of the wind site characteristics. (a) Geospatial distribution of power series nonlinearity; (b) Geospatial distribution of power series entropy; (c)
Geospatial distribution of wind power variability; (d) Geospatial distribution of mean wind power; (e) Geospatial distribution of mean wind speed; (f) Geospatial distribution of
capacity factor.



Fig. 5. Geospatial distributions of forecasting evaluation metrics. (a) Geospatial distribution of 1-h ahead forecasting nMAE; (b) Geospatial distribution of 1-h ahead forecasting
nRMSE; (c) Geospatial distribution of 4-h ahead forecasting nMAE; (d) Geospatial distribution of 4-h ahead forecasting nRMSE; (e) Geospatial distribution of 1-day ahead fore-
casting nMAE; (f) Geospatial distribution of 1-day ahead forecasting nRMSE.
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forecasting time horizons (i.e., 6-h and 1-day ahead) in WIND
Toolkit are utilized. Statistical short-term (1-h to 4-h ahead) fore-
casts are created by a machine learning based multi-model fore-
casting framework (M3). The entire 126,000 þ locations are
investigated and five states belonging to different Independent
System Operators (ISOs) are selected for case studies, which are
Texas (TX), Oklahoma (OK), Wyoming (WY), Kansas (KS), and New
York (NY). Texas is the leading state in terms of both cumulative and
newly installed wind capacity. Oklahoma and Kansas are two states
with high wind penetration. Wyoming has one of the highest wind
power potential in the U.S. New York has 1,749 MW installed wind,
leading the Northeast in overall wind energy capacity [28]; and the
largest offshore wind farm in the U.S. is planning to be constructed
in New York. Therefore, these states are selected for case studies.
Table 1 summarizes the wind power status in these states,
including the ISO/RTO, number of wind sites, andwind penetration.

To evaluate the diversity of the selected sites, a time series
characteristic analysis (TSCA) method developed in our previous
work is adopted and modified [29]. First, six characteristics are
extracted from each WIND Toolkit site, which are nonlinearity,
spectral entropy, wind power variability, mean wind power, mean
wind speed, and wind farm capacity. These wind characteristics are
expected to indicate the local weather conditions and wind farm
properties of wind power series (details about the wind
characteristics are described in Section 3). Then, principal compo-
nent analysis (PCA) is performed to reduce the characteristic matrix
dimension. It is found that the first three principal components
preserve 81.1% of the information in the WIND Toolkit. The 3D and
2D projection scatter plots ofWIND Toolkit sites are shown in Fig. 1.
Fig. 1bed shows that though the selected wind sites in the case
studies are significantly fewer than the entire WIND Toolkit sites,
the distribution areas of the case studies' scatters are close to that of
the entire WIND Toolkit (datasets with different diversity values
can be found in Ref. [29]). This is also supported by the diversity
index (Divs) shown in Fig. 2, which is defined as the volume of the
minimum convex polytope constructed by the scatter points [29]. It
is found that the diversity of wind data is not purely dependent on
the number of wind sites. For example, New York has 2,859 wind
sites, which is fewer than Oklahoma and Kansas, but the dataset for
the New York case is more diverse than the other two. Fig. 2 shows
that the five selected cases maintain a similar level of diversity as
the entire WIND Toolkit dataset.
3. Spatial analysis of wind sites

Short-term (1-h to 4-h ahead) and mid-term (6-h and 1-day
ahead) wind power forecasting is performed by the M3 method
[24] and the WRF model, respectively, for all the 126,000 þ wind



Fig. 6. Instance-spatial distributions of wind site characteristics and forecasting evaluation metrics. PCs are the principal components obtained by PCA. (a) Mean wind speed; (b)
Capacity factor; (c) Mean wind power (d) Power series nonlinearity; (e) Power series entropy; (f) Wind power variability; (g) 1-h ahead forecasting nMAE; (h) 1-h ahead forecasting
nRMSE.
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sites. Please note that the focus of this paper is not to develop the
most accurate forecasting algorithm but to investigate the impact of
local weather conditions and wind farm properties on thewind site
forecatability. Therefore, the impact of different forecasting algo-
rithms on the wind site forecastability is not explored. Geospatial
and instance-spatial distributions of wind sites' time series char-
acteristics and forecasting evaluation metrics are analyzed in this
section for forecastability quantification.
3.1. Wind characteristics

Local weather conditions and wind farm properties are quan-
tified by six wind characteristics, i.e., nonlinearity, spectral entropy,
the variability of wind power series, meanwind power, meanwind
speed, and capacity factor. Details of the six wind characteristics are
described as follows:

� Nonlinearity (a): The nonlinear nature of wind is the main
challenge to accurately forecast wind power. To deal with the
nonlinearity in wind time series, methods that adopt more
powerful models [30] or decompose complex series into mul-
tiple simpler signals [31] have been developed in the literature.
Therefore, nonlinearity is a critical feature to describe the wind
characteristics. The Ter€aesvirta's neural network test is
employed in this paper to measure the nonlinearity [32].

� Spectral entropy (H) of wind power series: Entropy is a measure
of uncertainty of a randomvariable. In the area of renewable and
load forecasting, entropy has been used as an index for time
series analysis [29], an informative criterion for feature selection
[33], a chaotic metric for signal preprocessing [34], and an error
metric for forecasting model assessment [35]. Therefore, en-
tropy is an important feature to quantify the wind series. The
spectral entropy is calculated as [35]:

n

H ¼ �
X
i¼1

PrðxiÞlog2½PrðxiÞ� (1)

where PrðxÞ is the mass probability of a random variable x, and n
is the number of points in the spectrum.

� Variability (i.e., mean absolute 1-h power gradient, mjP0 j): the
large variability of wind has introduced new challenges to po-
wer system operations, which stimulates the development of
advanced scheduling approaches to security-constrained unit
commitment [36], chance constrained optimal power flow [37],
and others. Wind power variability could be characterized by



Fig. 6. (continued).
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different metrics, such asmean absolute 1-h power gradient and
variance [38]. In this paper, the mean absolute 1-h power
gradient is chosen to represent the wind power variability:

mjP0 j ¼
1
n

Xn
i¼1

jPðiþ 1Þ � PðiÞj (2)

where P is the wind power and n is the size of the power vector.

� Meanwind speed (mS): Wind speed is the source of the potential
wind power and primary source of wind power uncertainty. The
mean wind speed is chosen since it is important for wind farm
siting [39], wind series density fitting [40], and wind dataset
reanalysis [41].

� Meanwind power (mP): The meanwind power is a critical index
to quantify wind site properties. It presents a different trend
fromwind speed series due to the cubic power curve nature. The
mean wind power is calculated from the WIND Toolkit wind
power series based on wind speed and different power curves.

� Capacity factor (CF): Capacity factor is an essential indicator in
evaluating a wind farm's efficiency [42], which is an important
factor for wind farm siting, sizing, and investment [43,44]. Wind
power capacity factor determines how fully the capacity of a
wind farm is utilized, which is defined as the average generated
power divided by the rated power:
CF ¼
1
n
Pn

i¼1PðiÞ
Prated

(3)

where Prated is the rated power of a wind turbine.
3.2. Forecasting methods

Multiple hourly time-scalewind power forecasting is performed
by using both statistical and numerical weather prediction (NWP)
methods. A machine learning based multi-model forecasting
framework (M3) developed in our previous work [24] is adopted for
short-term forecasting (i.e., 1-h to 4-h ahead). The WRF model is
adopted to create the 6-h and 1-day ahead forecasts. Details of the
models are described below.

The M3 is a machine learning based ensemble methodology for
short-term wind forecasting as shown in Fig. 3. There are two
modules in theM3: a deep feature selection (DS)module and a two-
layer ensemble forecasting (EF) module. The EF module consists of
four machine learning algorithms in the first layer, which are arti-
ficial neural network (ANN), support vector regression (SVR),
gradient boosting machine (GBM), and random forest (RF). These
machine learning algorithms with several training algorithms,
kernel functions, or distribution functions generate the forecasts, ~Y ,
independently in the first layer. Specifically, three ANNmodels with
standard back-propagation (BP), momentum-enhanced BP, and



Fig. 7. The scatterplot of the forecastability (F) and the wind power series entropy (H) in different look-ahead times. (a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h
ahead forecasting; (d) 1-d ahead forecasting.
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resilient BP training algorithms are selected based on their fast
convergence and satisfactory performance [45e47]. The most
popular kernels in SVR are used, including linear, polynomial, and
radial base function kernels [48e50]. GBM models with squared,
laplace, and T-distribution loss functions are empirically selected.
Note that no single model is guaranteed to outperform others, and
the algorithm and function selection is to diversify the behaviour of
models in the first layer of M3. The inputs, X, to the first-layer
models are optimized by the recursive feature elimination
method in the DS module. In the second layer, a blending machine
learning algorithm is used to ensemble the forecasts from the first-

layer models and provides the final forecasts, bY . The optimal
combination of the first-layer models is also ensured by the DS
module. The M3 can be expressed as follows [51,52]:

~yt;ij ¼ fij
�
xt;opt

�
(4)

byt ¼ F
�
~yt;opt

�
(5)

where t is the time index, fijð*Þ is the ith first-layer model using
kernel j, ~yij is the forecasts provided by the model fij, xt;opt2X is the
optimized inputs to the first-layer models, ~yt;opt is the optimal

combination of the first-layer forecasts, byt is the final forecast at
time t, and F is the blending algorithm in the second layer.

The WRF model is used to generate the 6-h and 1-day ahead
mid-term forecasts. In the WIND Toolkit dataset, the WRF model is
run with a 2-km grid. The model is initialized and forced at the
boundaries with the National Oceanic and Atmospheric Adminis-
tration (NOAA) Reforecast V2 Global Ensemble Forecast System
(GEFS). The natural spatial-temporal correlations of different look-
ahead times and between wind sites are kept in the forecasts. De-
tails of the WRF model and WIND Toolkit can be found in Ref. [27].

3.3. Geospatial and instance-spatial distribution analysis

TheM3 and theWRFmodels are used to generatemultiple time-
scale forecasts for the 126,000 þ wind sites in the U.S. The geo-
spatial distributions of the six wind characteristics are shown in
Fig. 4. Interesting patterns are observed from these maps. For
example, most wind series are largely non-linear in nature, as
shown by dark red points in Fig. 4a. But the offshore wind sites,



Fig. 8. Forecastability of Texas wind sites. (a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h ahead forecasting; (d) 1-d ahead forecasting.
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such as the wind sites at the Gulf of Mexico and on the East Coast,
are more linear (indicated by lighter color points in Fig. 4a) than
onshore sites. This is due to the more consistent and non-disturbed
nature of offshore wind [53]. Figures 4b and c show the uncertainty
and variability, respectively, whereas they agree with each other on
several patterns. For instance, the wind speed series in the Moun-
tain States, especially in Colorado, is more chaotic (illustrated by
red and orange points in Figs. 4b and 4c) than other regions.
Figures 4d-f show the geospatial distributions of three closely
interconnected characteristics, i.e., mean wind power, mean wind
speed, and capacity factor of all the WIND Toolkit sites. The
Mountain States have higher mean wind speed (shown by green
and orange points in Fig. 4e) than those in other areas due to the
speed-up effect [54]. The American East presents higher wind
speeds, wind power, and larger capacity factors than the American
West (except for the mountain areas). This is because: (a) the wind
forming at the tropical and subtropical latitudes in the northern
hemisphere prefers to move toward the west-northwest; and (b)
the water temperature gradient along the West Coast is lower than
that along the East Coast (due to the warmer Gulf Stream). The map
distributions of the forecasting normalized mean absolute errors
(nMAEs) and normalized root mean square errors (nRMSEs) of
different look-ahead times are shown in Fig. 5. The two error
metrics are defined as:

nMAE ¼ 1
n

Xn
t¼1

����byt � yt
ymax

���� (6)

nRMSE ¼ 1
ymax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1ðbyt � ytÞ2

n

s
(7)

where t is the time index, n is the length of forecasting data, by; y;
and ymax are the forecasted value, actual value, and maximum
actual value, respectively. It is found that the offshore wind fore-
casts are more accurate (illustrated by the light green and blue
points in Fig. 5) than the onshore wind forecasts, due to the rela-
tively more stable characteristics of the offshore wind. Some states
in the Mountain States, such as Wyoming, Colorado, and part of
Montana and New Mexico, present large forecasting errors due to
the large terrain roughness. By comparing the nMAE figures (i.e.,
Fig. 5a, c, and e) to the nRMSE figures (i.e., Fig. 5b, d, and f), even
though the forecasting nMAEs of the wind sites in Washington,
Oregon, and the boundary of California and Nevada are small, there



Fig. 9. Forecastability of Oklahoma wind sites.(a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h ahead forecasting; (d) 1-d ahead forecasting.
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is a higher chance to generate large forecasting errors as indicated
by the nRMSE metric that penalizes large forecasting errors in a
higher order.

Even though Figs. 4 and 5 are informative in analyzing the
geospatial patterns of wind sites in the U.S., it is still challenging to
compare different wind characteristics and forecasting metrics.
Therefore, a 3D instance space is constructed to convert the data
from a time series to a static point, while maintaining certain
physical information. The scatter plots in the 3D instance space and
corresponding 2D projections are shown in Fig. 6, wherein the color
bar indicates themagnitude of awind characteristic or a forecasting
error metric (only considering 1-h ahead forecasting here). By
comparing Figs. 6a and 6c, it is found that the color gradient di-
rections of the mean wind power (Fig. 6c) and mean wind speed
(Fig. 6a) are different, which means wind power and wind speed
are not positively dependent with each other. This is because
different power curves and capacities are applied in the WIND
Toolkit data. The color gradient directions of the mean wind speed
(Fig. 6a) and the wind farm capacity factor (Fig. 6b) are almost the
same, indicating that the mean wind speed influences the capacity

factor. Fig. 6d shows that the nonlinearity varies along the �ðP1�!þ
P2
�!Þ2ℝ2

PC1�PC2 and the top left region in ℝ2
PC1�PC2 has large
nonlinearity and thus is challenging for forecasting, vice versa. As
shown in Fig. 6f, the wind power variability value increases in the

ðP1�!� P3
�!Þ2ℝ2

PC1�PC3 direction first and then changes to the

�P3
�!

2ℝ2
PC1�PC3 direction. The scatter plot in Fig. 6e is not evidently

layered, whereas the entropy value decreases along the

�ðP1�!þ P2
�!Þ2ℝ2

PC1�PC2 direction. The 1-h ahead forecasting error
scatter plots are shown in Figs. 6g and 6h, which are more chaotic
than wind series characteristic plots in Figs. 6a-f. By observing 2D
projection spaces ℝ2

PC1�PC2 and ℝ2
PC1�PC3, forecasting errors, espe-

cially the nMAE is highly correlated with the entropy in Fig. 6e.
Thus, the relationship between the power series entropy and the
nMAE will be further investigated in the following section (Please
note that only the univariate regression is considered in this
research because the forecastability is already defined in the
complex regression process).
4. Forecastability quantification

In this section, the forecastability is quantified by using the
power series entropy. The scatter plots in Fig. 7 indicate a strong
relationship between forecastability and entropy for all the WIND



Fig. 10. Forecastability of Wyoming wind sites. (a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h ahead forecasting; (d) 1-d ahead forecasting.
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Toolkit sites. The error metric nMAE is one of the most widely used
error metrics in wind forecasting and has been adopted to indicate
the forecastability in the literature [5]. In this paper, the forecast-
ability is defined as F ¼ 1� nMAE, and a larger F value indicates
better forecastability. It is observed from Fig. 7 that wind series
with smaller entropy is more forecastable. In addition, forecasting
look-ahead time also affects the forecastability of time series. To be
more specific, the time series forecastability is decreased with the
increasing forecasting horizon. To better quantify the relationship,
both linear approximation and nonlinear trend are used to map
entropy to forecastability for the selected five regions. Quantile
regression is adopted to show the uncertainty of the linear rela-
tionship between forecastability and entropy.

4.1. Regression methods

Three methods are used to characterize the relationship be-
tween forecastability and time series characteristics, which are
linear regression, locally weighted scatterplot smoother (LOESS),
and quantile regression. Linear regression is selected because the
linear relationship is straightforward in practice and Figs. 6e and 6g
show a similar pattern. The LOESS and quantile regression are able
to characterize the nonlinear relationship and uncertainty between
forecastabiltiy and time series characteristics.
The LOESS is a flexible nonparametric nonlinear regression

method [55], which is widely used for depicting relationships be-
tween variables [56]. In this paper, the weighted least square is
used to fit a quadratic function at each local segment, with a tri-

cube weight function wðxÞ ¼ ð1�
���xj3Þ3. The smoothing param-

eter, a, is set to be 0.75 to represent proper nonlinearity of the
fitting.

Quantile regression is a statistical method that can characterize
uncertainty information. If the cumulative distribution function of a
random variable X is FXðxÞ :¼ PrðX � xÞ, the quantile function of
this random variable is defined as the inverse cumulative distri-
bution function: QðpÞ ¼ inf fx2ℝ : p � FðxÞg. Quantiles from 1% to
99% with an 1% interval are calculated. A detailed description about
quantile regression can be referred to [57].
4.2. Forecastability of five selected cases

The forecastability of the five designed cases (i.e., Texas, Okla-
homa, Wyoming, Kansas, and New York) are characterized. The
quantified relationship between forecastability at different look-
ahead times and the power series entropy is visualized in



Fig. 11. Forecastability of Kansas wind sites. (a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h ahead forecasting; (d) 1-d ahead forecasting.
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Figs. 8e12. It is shown that the LOESS regression lines generally
decrease with the increasing entropy for all five cases and different
look-ahead times. Some increasing trends only occur at the mini-
mum or maximum entropy areas, where the number of samples is
small, as shown in Figs. 10b and 12a. By comparing the forecast-
ability within the same look-ahead time forecasting, the uncer-
tainty in forecastability and wind power series entropy is also
highly related. For example, the uncertainty of forecastability in
Figs. 10e12 (indicated by wider 1%e99% quantiles) is larger when
the original wind power series has larger uncertainty (indicated by
larger entropy). By comparing the different look-ahead times, the
forecastability has relatively larger uncertainty in longer-term
forecasting, and 1%/99% quantiles are more cone-like, as shown in
Figs. 10 and 12. With the increasing look-ahead time, the fitting
tends to be more nonlinear, as illustrated by the larger gaps be-
tween linear approximations and LOESS regression lines in
Figs. 9e12 and the decreasing r2 values in Table 2. The slope
parameter a in Table 2 reflects the decreasing rate of the forecast-
ability regarding to entropy.

By comparing the five cases, Texas and Oklahoma show more
consistent uncertainty in forecastability than the other three cases
with the same look-ahead times, since the 1% and 99% quantiles are
more nearly parallel in Figs. 8 and 9 than those in Figs. 10e12.
Oklahoma has themost stable forecastability compared to the other
four cases, as shown by the narrowest quantiles. Additionally,
Oklahoma presents the most linear relationship between the
forecastability and the wind power series entropy in different look-
ahead times, as shown by the largest r2 values in Table 2. The
relationship between forecastability and entropy of New York wind
sites is relatively linear and stable in the 1-h ahead forecasting and
becomes variable and nonlinear in the longer-term forecasting, as
shown in Fig. 12. Overall, the forecastability is successfully quan-
tified by the power series entropy in different look-ahead times,
though the observations vary among the five selected cases.

5. Conclusion

This paper characterized the forecastability of wind series at
126,000 þ sites in the U.S., which are extremely useful at different
stages of a wind energy project, from wind resource assessment,
wind farm design, to long-term planning of wind integration. The
geospatial and instance spatial distributions of local weather con-
ditions, wind farm properties, and forecasting errors of
126,000 þwind sites in the U.S. were first analysed and interesting
patterns were observed. For example, the wind in certain regions,
such as the Gulf of Mexico, is easier to forecast due to the smaller



Fig. 12. Forecastability of New York wind sites. (a) 1-h ahead forecasting; (b) 4-h ahead forecasting; (c) 6-h ahead forecasting; (d) 1-d ahead forecasting.

Table 2
Linear approximation parameters.

State 1-h ahead 4-h ahead 6-h ahead 1-d ahead

a r2 a r2 a r2 a r2

Texas �0.48 0.50 �0.31 0.46 �0.37 0.43 �0.37 0.39
Oklahoma �0.55 0.90 �0.53 0.90 �0.41 0.75 �0.41 0.70
Wyoming �0.46 0.67 �0.43 0.74 �0.45 0.50 �0.46 0.44
Kansas �0.47 0.77 �0.66 0.82 �0.59 0.65 �0.61 0.62
New York �0.43 0.61 �0.42 0.53 �0.37 0.13 �0.37 0.10

Note: a is the slope of the linear approximation. r2 is the coefficient of determination
of the linear approximation.

C. Feng et al. / Renewable Energy 133 (2019) 1352e13651364
nonlinearity, entropy, and variability. To quantify the relationship
between forecastability and wind series characteristics, forecasts in
different look-ahead times are generated for all WIND Toolkit sites
by using the M3 statistical model and WRF NWP model. We found
the spectral entropy of a wind power series could be used to
quantify the forecastability of a wind location. Three regression
methods (i.e., linear approximation, LOESS nonparametric trend,
and quantile regression) were applied to characterize the rela-
tionship between forecastability and spectral entropy, and un-
certainties in forecastability were also quantified. The characterized
forecastability could provide valuable information to both wind
farm developers and power system operators. Future research will
investigate the financial models using wind site forecastability to
provide wind farm investors decision-making support.
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