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A B S T R A C T

Observational solar data is the foundation of data-driven research in solar power grid integration and power
system operations. Compared to other fields in data science, the openness and accessibility of solar data is
lacking, which prevents solar data science from catching up with the emerging trends of data science (e.g., deep
learning). In this paper, OpenSolar, a package with both R and Python versions, is developed to enhance the
openness and accessibility of publicly available solar datasets. The OpenSolar package provides access to
multiple types of solar data, primarily from four datasets: (1) the National Renewable Energy Laboratory (NREL)
Solar Power Data for Integration Studies dataset, (2) the NREL Solar Radiation Research Laboratory dataset, (3)
the Sheffield Solar-Microgen database, and (4) the Dataport database. Unlike other open solar datasets that only
contain meteorological data, the four datasets in the OpenSolar package also contain behind-the-meter power
data, sky images, and solar power data with satisfactory temporal and spatial resolution and coverage. The
overview, quality-control methods, and potential usage of the datasets, in conjunction with sample code im-
plementing the OpenSolar functions, are described in this paper. The package is expected to assist in bridging
the gaps between the research fields of solar energy, power systems, and data science.

1. Introduction

With the rapid development of sensor, wireless transmission, and
network communication technologies, large amounts of data have been
accumulated in the power and energy domain, which has brought
benefits of (i) enhancing system stability & reliability, (ii) increasing
asset utilization & efficiency, and (iii) better communications between
customers and utilities (Zhou et al., 2016; Tu et al., 2017). Solar energy
data is a core element of informed solar energy decision-making, such
as target setting & policy making (Cox et al., 2018), resource assessment
(Kleissl, 2013), investment (Ondraczek et al., 2015), forecasting
(Kleissl, 2018), and solar power integration & grid management
(Pohekar and Ramachandran, 2004). Nevertheless, solar data public
availability for research purposes lags behind other fields (e.g., image
processing) due to several impediments, such as business/security
concerns and institutional/personal inertia (Pfenninger et al., 2017).
Great efforts have been made to increase the transparency and avail-
ability of solar energy data (Pfenninger et al., 2018), which has lead to
over 40 datasets worldwide (Sengupta et al., 2017).

To further facilitate solar data research, promoting the availability
and accessibility of solar data sets is highly encouraged by the solar
energy community (Yang et al., 2018). For example, some well-known
solar datasets, like the Surface Radiation Budget Network (SURFRAD)
(Augustine et al., 2000) and National Solar Radiation Data Base
(NSRDB) (Sengupta et al., 2018), were developed and released to the
public. Solar forecasts have also become accessible from online plat-
forms, such as the IBM Physical Analytics Integrated Data Repository
and Services (PAIRS) (Lu et al., 2016). Despite the wealth of publicly
available datasets, it is still challenging for users to easily access and
pre-process these datasets. To this end, packages and libraries of R and
Python functions, two of the most popular languages in data science
and machine-learning, have been developed. For example, Lamigueiro
et al. (2018) developed an R package, meteoForecast, to provide
access to several Numerical Weather Prediction services. Yang (2018)
developed an R package, SolarData, to get access to meteorological
solar irradiance datasets. PVLIB, a Python package developed by
Sandia National Laboratories, provides various solar data and simula-
tion functions (Holmgren et al., 2015). However, most of the datasets
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accessed through current packages only include climatic and meteor-
ological data, which does not always meet the needs of the solar re-
search community due to the lack of (i) solar power data, (ii) behind-
the-meter photovoltaic (PV) data, (iii) time-synchronous heterogeneous
data that can be used for solar coordination research, such as data from
electrical vehicles, appliances, water and gas, and (iv) data in other
formats, such as sky images, which offer opportunities to take full ad-
vantage of deep learning techniques.

In this paper, a new package, OpenSolar (version 1.0), which has
both R and Python versions, is developed to increase the openness and
accessibility of diverse publicly available datasets. Ten functions are
provided in the package to download, quality control (QC), read in, pre-
process, and model with the data. In this paper, all the code examples
used to demonstrate the functions are written in R, which can be found
in the Github repository.1,2 The OpenSolar package should first be
installed and loaded before calling its functions. The installation code
and examples of function calls in the R package are shown as:

Four datasets are included in the package, which are the National
Renewable Energy Laboratory (NREL) Solar Power Data for Integration
Studies (SPDIS) dataset (GE Energy, 2010; Lew et al., 2013; Miller et al.,
2014; Bloom et al., 2016), NREL Solar Radiation Research Laboratory
(SRRL) dataset (Stoffel and Andreas, 1981), Sheffield Solar-Microgen
Database (Sheffield Solar, 2016), and the Dataport Database (Pecan
Street Inc, 2019). OpenSolar has the following advantages:

(1) The datasets accessed by OpenSolar contain diverse variables,
including meteorological variables, simulated solar PV power, be-
hind-the-meter PV measurements, behind-the-meter appliance
measurements, sky images, etc.

(2) The datasets have satisfactory spatial or temporal coverage and
resolution (e.g., Dataport contains 1min data and SPDIS covers the
entire US).

(3) The functions are well-packaged so that it is easy to access and pre-
process the datasets.

(4) Example use cases are provided in the package for demonstration
and benchmarking purposes.

The remainder of the paper is organized as follows. The four data-
sets and relevant R code are described sequentially in Sections 2–5.
Section 6 introduces the modeling and visualization of the machine-
learning based short-term solar forecasting benchmarks. Concluding
remarks and ideas for future work are given in Section 7. The code for
example usage and the Python version of the package are detailed in the
Appendices.

2. NREL Solar Power Data for Integration Studies (SPDIS) dataset

2.1. Overview

The NREL SPDIS dataset was originally created for large-scale re-
newable energy integration studies, including the Western Wind and
Solar Integration Study (GE Energy, 2010; Lew et al., 2013; Miller et al.,
2014) and Eastern Renewable Generation Integration Study (Bloom
et al., 2016). The SPIDS dataset consists of 1-year (2006) data of 5020
utility scale/distributed PV locations, covering 47 states (excluding
Alaska, North Dakota, and Hawaii) of the United States. The distribu-
tion and capacities of PV locations are visualized in Fig. 1. It is found
that Florida (593), California (405), and Georgia (332) are the three
states with the most PV locations in this dataset. The number of dis-
tributed PV locations is larger than centralized PV plants, which is il-
lustrated from the PV capacity distribution.

The SPDIS has 5-min simulated PV power data and hourly 1-day-ahead
(1DA) and 4-h-ahead (4HA) PV power forecasts. The PV power is gener-
ated based on irradiance from the NSRDB Physical Solar Model (PSM)
V2.0 version,3 which was developed based on a satellite cloud cover
model by the State University of New York (GE Energy, 2010). The 1DA
forecasts were generated by 3TIER based on numerical weather prediction
(NWP) simulations (Brower et al., 2009), while 4HA forecasts are pro-
duced by using a persistence of cloudiness method (Lew et al., 2013).

2.2. Potential usage

Created for solar power integration studies, SPDIS has an extensive
spatial coverage. Based on a meteorological dataset (i.e., NSRDB),
SPDIS provides solar power information with spatial diversity, which is
necessary for large-scale solar power integration research. For example,
SPDIS has provided opportunities for system-level operation studies (GE
Energy, 2010; Lew et al., 2013; Miller et al., 2014; Bloom et al., 2016),
power market design (Tewari et al., 2011), energy storage research
(Pandžić et al., 2015; Su and Gamal, 2013), among other applications.

SPDIS can also be used to develop solar forecasting methods, which
are critical for power system operations. SPDIS has been used to in-
vestigate solar forecasting by considering spatial hierarchy (Yang et al.,
2017), temporal hierarchy (Yang et al., 2017), and ensemble forecasting
(Yang and Dong, 2018). The generality of the dataset helps explore
statistical characteristics of solar forecasting, such as forecas error metric
development (Zhang et al., 2015), solar forecast error analysis (Zhang
et al., 2014; Zhang et al., 2013), and solar forecast benefit assessment
(Martinez-Anido et al., 2016). To the best of our knowledge, SPDIS has
the largest spatial extent among publicly available solar power datasets,
which is beneficial to large-scale solar power integration and general
forecasting pattern assessment (Feng et al., 2019).

1 https://github.com/UTD-DOES/OpenSolar.
2 https://zenodo.org/badge/latestdoi/155460712. 3 https://nsrdb.nrel.gov/current-version.
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2.3. Data pre-processing

SPDIS can be downloaded by state through HTTPS connections. The
easiest way is by clicking the corresponding download links from the
NREL SPDIS website.4 A more efficient approach is performing bulk
download through the URL of the dataset. In the OpenSolar package,
the SPDIS.download() function provides a neat front end to effi-
ciently batch download SPDIS data by state. The following code down-
loads, unzips, and filters data of PV locations in Alabama and Arkansas:

After uncompressing the zip file into CSV files, a folder with the state’s
name is created, containing PV power time series (and PV power fore-
casting time series if actualonly is set to be FALSE). While reading a
CSV file is easy by using read.table() or read.csv() function, im-
porting all the CSV files might be tedious. The OpenSolar package pro-
vides a function, SPDIS.read(), to import PV power time series from a
particular state and create a data frame. The function also stores locational
information in another data frame. We have found this function to be
useful for data pre-processing, especially for large spatial analysis.
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Fig. 1. Distribution map of PV locations in the SPDIS dataset. The unit of capacity is MW.

4 https://www.nrel.gov/grid/solar-power-data.html.
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2.4. Quality control

The SPDIS dataset has already been pre-processed by a two-stage QC:
the NSRDB QC and PV output QC. The NSRDB QC is performed by (i)
restricting solar zenith angle to be less than 80°, (ii) setting negative irra-
diance to be zero, (iii) excluding missing values, and (iv) determining sky
condition by cloud types (Habte et al., 2017; Sengupta et al., 2018). In terms
of PV output QC, PV output is simulated using PVWatts (Dobos, 2014),
which takes sub-hourly variability, derating factors, PV system installation
parameters, site selection, temporal trends, coincident relationships with
wind and load, and forecastability into consideration. More details of the PV
output QC can be found in (GE Energy, 2010).

3. NREL Solar Radiation Research Laboratory (SRRL) dataset

3.1. Overview

The NREL SRRL5 has been collecting continuous solar measure-
ments at NREL’s South Table Mountain Campus (longitude: 105.18°W,
latitude 39.74°N, elevation 1,828.2m), Golden, Colorado since 1981.
More than 80 instruments have been installed, including pyranometers,
pyrheliometers, pyrgeometers, photometers, and spectroradiometers,
which compose the Baseline Measurement System (BMS).6 The col-
lected data have both high temporal-resolution (varying with mea-
suring time and device) and diverse features. In addition to meteor-
ological and climatical data, the SRRL dataset also contains two sets of
total sky images, which are taken by a Yankee Total Sky Imager (TSI-
800) and an EKO All Sky Imager (ASI-16). Both sets of TSIs have sky
image snapshots and cloud-analyzed images with 10-min resolution.
The TSI-800 has captured TSIs with a resolution of 288× 352 pixels
since 2004-07-14, while the ASI-16 started to record TSIs with a higher
resolution of 1536× 1536 pixels on 2017-09-26.

3.2. Potential usage

The NREL SRRL dataset is recognized for its high quality, which has
been used as the benchmarking standard to validate the quality of other
datasets with measured or simulated data, such as NREL’s Surface
Radiation Budget Network dataset, NOAA’s Integrated Surface
Irradiance Study dataset (Anderberg and Sengupta, 2014), and the
NSRDB (Habte et al., 2017). SRRL has also been used to verify the ef-
fectiveness of irradiance models (Vick et al., 2012), spectral distribution
derivation (Myers, 2012), and transposition models (Xie et al., 2018).

Due to its wide range of measurements, SRRL has been extensively
used in solar energy research, such as solar forecasting (Reikard, 2009),
and solar energy statistical analysis (Lave and Kleissl, 2010; Kang and
Tam, 2013), PV panel design optimization (Lave and Kleissl, 2011),
solar energy and electrical vehicle coordination (Saber and
Venayagamoorthy, 2010; Saber and Venayagamoorthy, 2011). Unique
among publicly available datasets, the sky images in SRRL dataset
provide special input features for sky image processing based solar
forecasting, including pixel red blue ratio statistics (Feng et al., 2018;
Feng and Zhang, 2018; Feng et al., 2017b), cloud coverage (Saade et al.,
2014), and cloud classes (Zhen et al., 2015).

3.3. Quality control

The SRRL QC that has already been performed on the dataset is
twofold, including sky image QC and ground-based measurement QC.

The sky image QC consists of selecting the high-resolution sky image set
and pre-processing sky images. For the ground based measurements,
there are over 190 measured variables collected from 80+ devices,
which are maintained under NREL’s SERI-QC methodology (Stoffel and
Andreas, 1981).

Considering the higher resolution and more advanced quality-con-
trol algorithms, the ASI-16 sky images are included in this package.
Two sky images are taken by the ASI-16 every 10min, a normal ex-
posed original image (named with an ‘_11_NE’ extension) and an un-
derexposed original image (named with a ‘_12_UE’ extension). The
angle offset of the original images is rectified so that the calibrated
images (with ‘_11’ and ‘_12’ extensions, respectively) are in the same
direction as a map, i.e., North at the top. The pixels with zenith angles
larger than 70° are discarded from the images to avoid hazy sky and
obstacle presence (Luiz et al., 2018). In addition to the original and
calibrated images, two sets of cloud-detected images are also provided
based on the blue/red and blue/green ratio (BRBG) algorithm and the
cloud detection and opacity classsifcation (CDOC) algorithm (Ghonima
et al., 2012) (named with ‘BRBG’ and ‘CDOC’ extensions, respectively).
The BRBG algorithm classifies cloud pixels by an RGB threshold. The
CDOC algorithm employs a clear sky library to improve the classifica-
tion (both thin cloud pixels and thick cloud pixels) accuracy and re-
moves the pixels affected by sun glaring (shown as the black triangle
around the sun in Fig. 2(f)). A set of 6 example images of each variety
are shown in Fig. 2.

SERI-QC performs post-measurement quality and uncertainty as-
sessment to ensure that the data is within established boundaries and
follows plausible patterns (Maxwell et al., 1993). The SERI-QC has been
widely applied for solar irradiance QC (Zell et al., 2015; Diagne et al.,
2014; Gueymard and Wilcox, 2011), and the quality-assured SRRL
dataset is often used as ground-truth to calibrate other datasets
(Anderberg and Sengupta, 2014; Lave and Kleissl, 2010).

3.4. Data pre-processing

With the inclusion of rich climatic and meteorological variables,
SRRL can support a number of different types of solar research.
Therefore, a function called SRRL.download() in the OpenSolar
package was developed to access the wealth of variables, collected from
over 80 devices. The variable and device information can be found on
the SRRL BMS instrument description webpage.7 In addition to nu-
merical measurements, the SRRL.download() function can also
download ASI-16 sky images. Numerical time series and sky images can
be downloaded together or seperately based on different uses, con-
trolled by the skyimg and tmseries parameters. The sky images are
zipped by day, which can be uncompressed by the function. Redundant
images, except for raw images and the CDOC-processed images, are
removed from the disk if the boolean parameter ifunique is TRUE.
The following code provides an example of downloading both time
series measurements and sky images within a time range.

5 https://www.nrel.gov/esif/solar-radiation-research-laboratory.html.
6 https://midcdmz.nrel.gov/srrl_bms/. 7 https://midcdmz.nrel.gov/srrl_bms/.
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A large collection of sky image features have been proven beneficial
to very-short-term and short-term solar forecasting, including pixel RGB
statistics (Yang et al., 2014), cloud motion vectors (Chow et al., 2011),
and cloud coverage (Chu et al., 2013; Fu and Cheng, 2013). The
OpenSolar package provides availability and flexibility of sky image
pre-processing through the SRRL.read() function. Five critical fea-
tures of raw sky images and CDOC-processed images are extracted,
which are mean, standard deviation, the second-order entropy8 of raw

sky image pixel normalized red-blue ratios, along with thin cloud
coverage, and opaque cloud coverage from CDOC-processed images.
We encourage processing images with more advanced techniques, such
as convolutional neural networks, to extract other information. There-
fore, the raw images are loaded and stored in pixel arrays with pixel
RGB values, if returnRGB is TRUE. The following code shows an ex-
ample of pre-processed images at one timestamp:

Fig. 2. NREL SRRL sky images and pre-processed images at the same time. (a) Original normal exposed image, (b) calibrated normal exposed image, (c) original
underexposed image, (d) calibrated underexposed image, (e) BRBG-processed image, and (f) CDOC-processed image.

8 The second-order entropy, also known as Shannon’s entropy, measures how
much information contained in the image.
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4. Sheffield Solar – Microgen database

4.1. Overview

The Microgen Database (Microgen)9 is a dataset managed by Shef-
field Solar, University of Sheffield, which collects PV data from over
7000 locations across the United Kingdom (Sheffield Solar, 2016). The
PV generation data is uploaded to the Microgen database by PV system
owners, and thus has various lengths and temporal resolutions across
the different locations. The dataset includes both residential and com-
mercial PV installations between 0.7 kilowattpeak (kWp) and 69 kWp
with different orientations and tilt angles (Taylor et al., 2015). Few PV
power generation datasets with such a large spatial coverage are pub-
licly available (especially residential PV), primarily because of privacy
concerns. We believe that the Microgen dataset provides valuable op-
portunities for data-driven research in both the solar energy and power
system domains. The Microgen dataset has been subjected to several QC
methods, and erroneous data has been isolated and corrected by Shef-
field Solar (Taylor et al., 2015).

4.2. Potential usage

The two advantages of Microgen are: (i) having a large spatial
coverage and (ii) having behind-the-meter PV generation data, which
have led to a wide range of publications on spatial solar energy analysis
and distributed power system research. More specifically, the dataset’s
spatial coverage is beneficial to large-scale PV monitoring and char-
acterization (Taylor et al., 2015; Colantuono et al., 2014), solar power
spatial aggregation modeling (Lingfors and Widén, 2016), and spa-

tial–temporal solar forecasting (Silva and Brito, 2018). Behind-the-
meter PV generation data has been used for distributed energy storage
operation optimization (Hassan et al., 2017), distributed energy storage
financial and environmental benefit assessment (Jones et al., 2017), PV
investment analysis (Leicester et al., 2016), and PV self-consumption
evaluation (Leicester et al., 2016).

4.3. Data pre-processing

Sheffield Solar requires submitting a data request form to gain ac-
cess to Microgen. Two CSV files will be sent by email once the data
request is approved, containing time series data and metadata of a
collection of PV generation locations. A subset of Microgen was ob-
tained by the authors and is used in this paper for demonstration pur-
poses. The subset includes 50 distributed PV systems in the Southeast
UK, which is geospatially diverse for solar energy research. The ob-
tained meta information consists of geospatial coordinates, elevation,
azimuth, capacity, panel size, etc., which are shown in Fig. 3. It is ob-
served that all the PV systems are residential, since the maximum ca-
pacity is 3.45 kWp. The 50 PV generation time series range from 2014-
01-01 to 2014-12-31 with a 30-min resolution.

The cumulative generation time series data is stored in one column
of the CSV file, which is a typical database structure. The other three
columns, i.e., id, date, and time, are used to differentiate PV location,
date, and time information, respectively. The Microgen.read()
function in the OpenSolar package calculates 30-min PV generation
based on the cumulative generation reading and structurizes the one-
column values in a standard multi-column time series data frame, the
code for which is:

9 https://www.microgen-database.org.uk.
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5. The Dataport database

5.1. Overview

The Dataport database is one of the largest datasets of disaggregated
customer energy data, managed by Pecan Street Inc. Its data is collected
from 1446 houses (1346 in Texas, 57 in Colorado, 58 in California, 4 in
Oklahoma, and 1 in Illinois), of which 318 houses have PV installations
(as of October 15th 2018). The dataset was originally created to un-
derstand customer behaviour regarding new devices, information, and
price signals of the smart grid (Rhodes et al., 2014). The electricity
consumption data of the entire home and various numbers of appli-
ances is collected with less than or equal to 1-min resolution, along with
natural gas and water consumption data. The Dataport dataset has a
university schema, which offers all available data to researchers at US
universities. The large number of monitored houses, high temporal
resolution, and various behind-the-meter device (including behind-the-
meter PVs) measurements make Dataport an ideal dataset for solar
energy research.

5.2. Potential usage

Dataport has been extensively utilized in power system demand-side
management (Bai et al., 2016), load forecasting (Tascikaraoglu and
Sanandaji, 2016), electric vehicle integration (Shin and Baldick, 2017;
Munshi and Mohamed, 2018), water/gas usage analysis and their nexus
with electricity (Xue et al., 2017; Nagasawa et al., 2018; Vitter and
Webber, 2018). It also contributes to solar energy research, such as
distributed solar energy storage (Fares and Webber, 2017), solar-pow-
ered microgrid design (Halu et al., 2016; Lainfiesta et al., 2018), PV
sizing (Kazhamiaka et al., 2018) and integration (Deetjen et al., 2017).
However, it is surprising that this dataset has not yet been used for solar
forecasting. We believe that Dataport is able to stimulate research in PV
generation forecasting, especially spatial-temporal PV forecasting,

behind-the-meter PV forecasting, net load forecasting, and PV fore-
casting benefit assessment.

5.3. Data pre-processing

There are three ways to approach the Dataport database: (i) via
Spotlight, an Interactive Database Access tool, (ii) via the PostgreSQL
client, and (iii) via outside client connections. Spotlight is able to export
data by specifying the date range, table name, measured variables, and
house IDs. Data is also accessible by any PostgreSQL client (e.g.,
pgAdmin) through SQL commands. Both approaches need to export and
store data from other integrated development environments, which
takes independent steps and extra effort. Two functions, namely,
Dataport.meta() and Dataport.get(), are provided in the
OpenSolar package to extract, download, filter, clean, and format
data for PV-related research.

To fully take advantage of Dataport, table names and a list of houses
with PV installations can be extracted through the Dataport.meta()
function. In order to do that, the connection between R and the
Dataport database is first set up with a PostgreSQL Database Interface.
A username and a password are required to connect to Dataport, details
of access to which can be found on the Dataport Advanced Access
webpage.10 The metadata can be downloaded if function parameter
metadownload is TRUE and the saving directory is specified. An ex-
ample of using the Dataport.meta() function is shown in the sample
code below. There are a total of 72 tables in the Dataport database,
which are useful for PV and PV-wind/load/electrical vehicle/energy
storage/water/gas coordination research. The metadata includes a
collection of information, such as state, city, PV installation capacity,
and house size. It is important to note that the installation of a PV meter
does not ensure the successful monitoring of PV generation (which will

Fig. 3. Distribution map of PV locations of a microgen subset.

10 https://dataport.cloud.
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result in NA elements in metadata and NA PV columns in the house
measurement time series table/data frame). This issue will be tackled
by metadata QC, which will be introduced in Section 5.4.

The Dataport.get() function fetches behind-the-meter mea-
surements of a house, once the house_id parameter is specified. The
measurement time series has several time resolutions, i.e., 1 h, 15min,
and 1min, which can be determined by the time_resolution para-
meter. The Dataport.get() function also has a QC option, which
will be introduced in Section 5.4.

5.4. Quality control

QC of Dataport is performed by the OpenSolar package, which can

be divided into metadata QC and time series QC. The metadata docu-
ments the PV installation information, which cannot guarantee the
existence of measurements. To avoid empty PV columns returned by the

Dataport.get() function, the right metadata should be properly
quality-controlled. Since there is no additional information to identify
the success of actual monitoring, PV value existence check is performed
for all of the 318 PV installed houses by setting the QC parameter as
TRUE. An example of quality controlled metadata extraction is shown
in the following code segment. There are 190 out of 318 PV-installed
houses having PV measurements. It is also important to note that

checking through the electricity table in the database takes non-negli-
gible computational time (around 116min on a laptop with an Intel
Core i7 2.6 GHz processor and a 16.0 GB RAM).
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The measurements of Dataport are examined by several QC
thresholds (the details are contained in the required non-disclousre
agreement), during which spurious data are removed. In this case, four
additional QC criteria are applied to (i) filter out discontinuous vari-
ables, which are defined as more than 10% values missing, (ii) restrict
PV values between 0 and the rated capacity, (iii) linearly interpolate NA
values, and (iv) identify deleted rows and perform linear interpolation.
QC flags indicate good data by 0, missing data by 1, out-of-bound data
by 2, and deleted data by 3. Extracting data with and without QC is
shown as follows:

6. Benchmark modeling for short-term solar forecasting

Short-term solar forecasting plays an important role in power
system operations. The OpenSolar package provides a function,
MLForecast(), to mitigate the trivial benchmark modeling process in

solar forecasting. A total of 10 powerful and widely-used machine-
learning models are provided in the function, incuding 3 support vector
regression (SVR) models, 3 artificial neural networks (ANNs), 3 gra-
dient boosting machine (GBM) models, and a random forest (RF) model
(Feng et al., 2017a). The training and forecasting process of these 10
models can be realized with just one line of code once the data is for-
matted and cleaned. In addition, forecasting time horizon and training/
testing data partition ratio are required by the function. A matrix with
both the forecast and actual time series, and a forecast evaluation
metric table are generated. A visualization function, MLVisual(), is

also provided to visualize the forecasting results. MLVisual() takes
the forecast results generated by the MLForecast() function and
outputs actual and forecast time series and barplots of three key fore-
cast error metrics:
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7. Conclusion and future work

In this paper, a package with both R and Python versions,
OpenSolar, was developed to promote the openness and accessibility
of solar data. Specifically, there are four publicly available datasets
included in the package, namely, (i) NREL Solar Power Data for
Integration Studies dataset, (ii) NREL Solar Radiation Research
Laboratory dataset, (iii) Sheffield Solar-Microgen database, and (iv)
Dataport database. The four datasets provide diverse types of solar re-
search data, such as: behind-the-meter measurements, PV power, sky
images, and meteorological variables. This paper has described how

these datasets, their quality control, potential uses, and sample code
scripts from the OpenSolar package can be used to download and pre-
process the data. The OpenSolar package is expected to bridge the gap
among the solar data science, power system research, and machine/
deep learning domains, making different solar data types more readily
available to both solar energy researchers and non-domain experts.

In the future, we will extend this research in the following direc-
tions: (i) including more datasets in the package, (ii) providing deep-
learning-based example usage of the datasets, and (iii) setting up
standard datasets and benchmarking models for data-driven modeling
in solar energy.

Appendix A. Example use case 1: temporal reconciliation with the Microgen dataset

Power systems require solar forecasts with various time resolutions. However, forecasting solar power independently with different time re-
solutions suffers from aggregate inconsistencies. Regression estimator-based reconciliation methods have been verified to preserve consistency in the
solar forecasting temporal hiearchy and provide more accurate solar forecasts (Yang et al., 2017). In this appendix, we implement the temporal
reconciliation methods proposed by Yang et al. (2017) and reproduce similar results as a Microgen dataset example use case. The case studies are
included in the R script named MicrogenExample.R. Details of the temporal reconciliation methods can be found in Yang et al. (2017).

Appendix B. Example use case 2: geographical reconciliation with the SPDIS dataset

Solar forecasting plays crucial roles in different geographical-level power system operations. For example, customer-level forecasts can be used
for demand response, while system-level forecasts can be used for unit commitment and economic dispatch. Being provided by different vendors,
inconsistencies also exist among solar forecasts with different geographical resolutions. Yang et al. (2017) regulated the inconsistent spatial-hier-
archical solar forecasts by geographical reconciliation techniques. The SPDIS dataset is used to reproduce the empirical portion of Yang et al. (2017),
which aims to reveal the potential usage of the solar data with a large geographical coverage. Results of the case studies can be generated by
executing the R script named SPDISExample.R. Details of the geographical reconciliation methods can be found in Yang et al. (2017).

Appendix C. OpenSolar Python library

The OpenSolar Python library (OpenSolar-Python) contains the same 5 functions with the identical input and output formats. The installation of
the OpenSolar-Python can be conducted by pip, the Python package installer, from the Github.11,12 The installation code is shown as:

Appendix D. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.solener.2019.07.016.

References

Anderberg, Mary, Sengupta, Manajit, 2014. Comparison of data quality of NOAA’s ISIS
and SURFRAD networks to NREL’s SRRL-BMS. Technical report, National Renewable
Energy Lab. (NREL), Golden, CO (United States).

Augustine, John A., DeLuisi, John J., Long, Charles N., 2000. SURFRAD–A national sur-
face radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 81
(10), 2341–2358.

Bai, Yang, Zhong, Haiwang, Xia, Qing, 2016. Real-time demand response potential eva-
luation: a smart meter driven method. In: Power and Energy Society General Meeting
(PESGM), 2016. IEEE, pp. 1–5.

Bloom, Aaron, Townsend, Aaron, Palchak, David, Novacheck, Joshua, King, Jack, Barrows,
Clayton, Ibanez, Eduardo, O’Connell, Matthew, Jordan, Gary, Roberts, Billy, et al.,
2016. Eastern renewable generation integration study. Technical report, National
Renewable Energy Laboratory, Golden, CO, Tech. Rep. NREL/TP-6A20-64472.

Brower, Michael, et al., 2009. Development of Eastern regional wind resource and wind
plant output datasets. Technical report, National Renewable Energy Laboratory,
Golden, CO, Tech. Rep. No. NREL/SR-550-46764.

Chow, Chi Wai, Urquhart, Bryan, Lave, Matthew, Dominguez, Anthony, Kleissl, Jan,
Shields, Janet, Washom, Byron, 2011. Intra-hour forecasting with a total sky imager
at the UC San Diego solar energy testbed. Solar Energy 85 (11), 2881–2893.

Chu, Yinghao, Pedro, Hugo T.C., Coimbra, Carlos F.M., 2013. Hybrid intra-hour DNI
forecasts with sky image processing enhanced by stochastic learning. Solar Energy
98, 592–603.

Colantuono, Giuseppe, Everard, Aldous, Hall, Lisa M.H., Buckley, Alastair R., 2014.
Monitoring nationwide ensembles of PV generators: limitations and uncertainties.
The case of the UK. Solar Energy 108, 252–263.

Cox, Sadie, Lopez, Anthony, Watson, Andrea, Grue, Nick, Leisch, Jennifer E., 2018. Renewable
energy data, analysis, and decisions: a guide for practitioners. Technical report.

Deetjen, Thomas A., Vitter, J. Scott, Webber, Michael E., 2017. Improving solar-induced
grid-level flexibility requirements using residential central utility plants. In:
PowerTech, 2017 IEEE Manchester. IEEE, pp. 1–6.

Diagne, Maimouna, David, Mathieu, Boland, John, Schmutz, Nicolas, Lauret, Philippe,
2014. Post-processing of solar irradiance forecasts from WRF model at Reunion
Island. Solar Energy 105, 99–108.

Dobos, Aron, 2014. PVWatts version 5 manual. Technical report, National Renewable
Energy Laboratory Golden, CO.

Fares, Robert L., Webber, Michael E., 2017. The impacts of storing solar energy in the
home to reduce reliance on the utility. Nature. Energy 2 (2), 17001.

Feng, Cong, Zhang, Jie, 2018. Hourly-similarity based solar forecasting using multi-model
machine learning blending. In: IEEE PES General Meeting 2018. IEEE PES.

Feng, Cong, Cui, Mingjian, Hodge, Bri-Mathias, Zhang, Jie, 2017a. A data-driven multi-
model methodology with deep feature selection for short-term wind forecasting.
Appl. Energy 190, 1245–1257.

Feng, Cong, Cui, Mingjian, Lee, Meredith, Zhang, Jie, Hodge, Bri-Mathias, Lu, Siyuan,
Hamann, Hendrik F., 2017b. Short-term global horizontal irradiance forecasting
based on sky imaging and pattern recognition. In: IEEE PES General Meeting. IEEE.

Feng, Cong, Cui, Mingjian, Hodge, Bri-Mathias, Lu, Siyuan, Hamann, Hendrik, Zhang, Jie,
2018. Unsupervised clustering-based short-term solar forecasting. IEEE Trans. Sust.
Energy.

Feng, Cong, Sun, Mucun, Cui, Mingjian, Chartan, Erol Kevin, Hodge, Bri-Mathias, Zhang,
Jie, 2019. Characterizing forecastability of wind sites in the united states. Renew.
Energy 133, 1352–1365.

Fu, Chia-Lin, Cheng, Hsu-Yung, 2013. Predicting solar irradiance with all-sky image
features via regression. Solar Energy 97, 537–550.

GE Energy, 2010. Western wind and solar integration study. Technical report, Citeseer.
Ghonima, M.S., Urquhart, B., Chow, C.W., Shields, J.E., Cazorla, A., Kleissl, J., 2012. A

method for cloud detection and opacity classification based on ground based sky
imagery. Atmosph. Meas. Tech. 5 (11), 2881–2892.

11 https://github.com/UTD-DOES/OpenSolar_Python
12 https://zenodo.org/badge/latestdoi/173795145

C. Feng, et al. Solar Energy 188 (2019) 1369–1379

1378

https://doi.org/10.1016/j.solener.2019.07.016
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0010
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0010
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0010
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0015
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0015
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0015
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0030
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0030
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0030
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0035
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0035
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0035
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0040
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0040
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0040
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0050
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0050
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0050
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0055
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0055
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0055
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0065
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0065
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0075
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0075
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0075
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0080
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0080
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0080
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0085
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0085
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0085
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0090
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0090
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0090
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0095
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0095
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0105
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0105
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0105
https://github.com/UTD-DOES/OpenSolar_Python
https://zenodo.org/badge/latestdoi/173795145


Gueymard, Christian A., Wilcox, Stephen M., 2011. Assessment of spatial and temporal
variability in the US solar resource from radiometric measurements and predictions
from models using ground-based or satellite data. Solar Energy 85 (5), 1068–1084.

Habte, Aron, Sengupta, Manajit, Lopez, Anthony, 2017. Evaluation of the National Solar
Radiation Database (NSRDB): 1998–2015. Technical Report, National Renewable
Energy Lab. (NREL), Golden, CO (United States).

Halu, Arda, Scala, Antonio, Khiyami, Abdulaziz, González, Marta C., 2016. Data-driven
modeling of solar-powered urban microgrids. Sci. Adv. 2 (1), e1500700.

Hassan, Abubakar Sani, Cipcigan, Liana, Jenkins, Nick, 2017. Optimal battery storage
operation for PV systems with tariff incentives. Appl. Energy 203, 422–441.

Holmgren, William F., Andrews, Robert W., Lorenzo, Antonio T., Stein, Joshua S., 2015.
PVLIB python 2015. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

Jones, Christopher, Peshev, Vladimir, Gilbert, Paul, Mander, Sarah, 2017. Battery storage
for post-incentive PV uptake? A financial and life cycle carbon assessment of a non-
domestic building. J. Clean. Prod. 167, 447–458.

Kang, Byung O, Tam, Kwa-Sur, 2013. A new characterization and classification method
for daily sky conditions based on ground-based solar irradiance measurement data.
Solar Energy 94, 102–118.

Kazhamiaka, Fiodar, Ghiassi-Farrokhfal, Yashar, Keshav, Srinivasan, Rosenberg, Catherine,
2018. Robust and practical approaches for solar PV and storage sizing. In: Proceedings of
the Ninth International Conference on Future Energy Systems. ACM, pp. 146–156.

Kleissl, Jan, 2013. Solar Energy Forecasting and Resource Assessment. Academic Press.
Kleissl, Jan, 2018. Special issue on progress. Solar Energy.
Lainfiesta, Maximiliano, Zhang, Xuewei, Sunday, Rick, 2018. Design of solar-powered

microgrid at Texas A&M university-kingsville. In: Texas Power and Energy
Conference (TPEC), 2018 IEEE. IEEE, pp. 1–6.

Lamigueiro, Oscar Perpinan, Almeida, Marcelo Pinho, Lamigueiro, Maintainer Oscar
Perpinan, 2018. Meteoforecast: Numerical Weather Predictions. R package version 0.
52.< https://cran.r-project.org/package=meteoForecast> .

Lave, Matthew, Kleissl, Jan, 2010. Solar variability of four sites across the state of
Colorado. Renew. Energy 35 (12), 2867–2873.

Lave, Matthew, Kleissl, Jan, 2011. Optimum fixed orientations and benefits of tracking for
capturing solar radiation in the continental United States. Renew. Energy 36 (3),
1145–1152.

Leicester, Philip A, Goodier, Chris I, Rowley, Paul, 2016. Probabilistic evaluation of solar
photovoltaic systems using Bayesian networks: a discounted cash flow assessment.
Prog. Photovolt.: Res. Appl. 24 (12), 1592–1605.

Leicester, Philip A., Goodier, Chris I., Rowley, Paul N., 2016. Probabilistic analysis of
solar photovoltaic self-consumption using Bayesian network models. IET Renew.
Power Gener. 10 (4), 448–455.

Lew, Debra, Brinkman, Greg, Ibanez, E., Hodge, B., King, J., 2013. The Western wind and
solar integration study phase 2. Contract 303, 275–3000.

Lingfors, David, Widén, Joakim, 2016. Development and validation of a wide-area model
of hourly aggregate solar power generation. Energy 102, 559–566.

Lu, Siyuan, Shao, Xiaoyan, Freitag, Marcus, Klein, Levente J., Renwick, Jason, Marianno,
Fernando J., Albrecht, Conrad, Hamann, Hendrik F., 2016. IBM PAIRS curated big
data service for accelerated geospatial data analytics and discovery. In: 2016 IEEE
International Conference on Big Data (Big Data). IEEE, pp. 2672–2675.

Luiz, Eduardo Weide, Martins, Fernando Ramos, Costa, Rodrigo Santos, Pereira, Enio
Bueno, 2018. Comparison of methodologies for cloud cover estimation in Brazil-A
case study. Energy Sust. Dev. 43, 15–22.

Martinez-Anido, Carlo Brancucci, Botor, Benjamin, Florita, Anthony R., Draxl, Caroline,
Lu, Siyuan, Hamann, Hendrik F., Hodge, Bri-Mathias, 2016. The value of day-ahead
solar power forecasting improvement. Solar Energy 129, 192–203.

Maxwell, E., Wilcox, S., Rymes, M., 1993. Users manual for SERI QC software, assessing
the quality of solar radiation data. Technical report, National Renewable Energy Lab.
(NREL), Golden, CO (United States).

Miller, Nicholas W., Shao, M., Pajic, S., D’Aquila, R., 2014. Western wind and solar in-
tegration study phase 3–frequency response and transient stability. Technical report,
National Renewable Energy Lab. (NREL), Golden, CO (United States); GE Energy
Management, Schenectady, NY (United States).

AmrMunshi, Yasser A.-R.I.Mohamed, 2018. Unsupervised non-intrusive extraction of
electrical vehicle charging load patterns. IEEE Trans. Ind. Inform.

Myers, Daryl R., 2012. Direct beam and hemispherical terrestrial solar spectral distributions
derived from broadband hourly solar radiation data. Solar Energy 86 (9), 2771–2782.

Nagasawa, Kazunori, Rhodes, Joshua D., Webber, Michael E., 2018. Assessment of pri-
mary energy consumption, carbon dioxide emissions, and peak electric load for a
residential fuel cell using empirical natural gas and electricity use profiles. Energy
Build. 178, 242–253.

Ondraczek, Janosch, Komendantova, Nadejda, Patt, Anthony, 2015. WACC the dog: The effect
of financing costs on the levelized cost of solar PV power. Renew. Energy 75, 888–898.

Pandžić, Hrvoje, Wang, Yishen, Qiu, Ting, Dvorkin, Yury, Kirschen, Daniel S., 2015. Near-
optimal method for siting and sizing of distributed storage in a transmission network.
IEEE Trans. Power Syst. 30 (5), 2288–2300.

Pecan Street Inc, 2019. Dataport Database.< https://dataport.cloud> .
Pfenninger, Stefan, DeCarolis, Joseph, Hirth, Lion, Quoilin, Sylvain, Staffell, Iain, 2017.

The importance of open data and software: is energy research lagging behind? Energy
Policy 101, 211–215.

Pfenninger, Stefan, Hirth, Lion, Schlecht, Ingmar, Schmid, Eva, Wiese, Frauke, Brown,
Tom, Davis, Chris, Gidden, Matthew, Heinrichs, Heidi, Heuberger, Clara, et al., 2018.
Opening the black box of energy modelling: strategies and lessons learned. Energy
Strategy Rev. 19, 63–71.

Pohekar, S.D., Ramachandran, M., 2004. Application of multi-criteria decision making to
sustainable energy planning-a review. Renew. Sust. Energy Rev. 8 (4), 365–381.

Reikard, Gordon, 2009. Predicting solar radiation at high resolutions: a comparison of
time series forecasts. Solar Energy 83 (3), 342–349.

Rhodes, Joshua D., Upshaw, Charles R., Harris, Chioke B., Meehan, Colin M., Walling,
David A., Navrátil, Paul A., Beck, Ariane L., Nagasawa, Kazunori, Fares, Robert L.,
Cole, Wesley J., et al., 2014. Experimental and data collection methods for a large-
scale smart grid deployment: methods and first results. Energy 65, 462–471.

Saade, Elizabeth, Clough, David E., Weimer, Alan W., 2014. Use of image-based direct
normal irradiance forecasts in the model predictive control of a solar-thermal reactor.
J. Solar Energy Eng. 136 (1), 010905.

Saber, Ahmed Yousuf, Venayagamoorthy, Ganesh Kumar, 2010. Efficient utilization of
renewable energy sources by gridable vehicles in cyber-physical energy systems. IEEE
Syst. J. 4 (3), 285–294.

Saber, Ahmed Yousuf, Venayagamoorthy, Ganesh Kumar, 2011. Plug-in vehicles and
renewable energy sources for cost and emission reductions. IEEE Trans. Ind. Electron.
58 (4), 1229–1238.

Sengupta, Manajit, Habte, Aron, Gueymard, Christian, Wilbert, Stefan, Renne, Dave,
2017. Best practices handbook for the collection and use of solar resource data for
solar energy applications. Technical report, National Renewable Energy Lab. (NREL),
Golden, CO (United States).

Sengupta, Manajit, Xie, Yu, Lopez, Anthony, Habte, Aron, Maclaurin, Galen, Shelby, James,
2018. The National Solar Radiation Data Base (NSRDB). Renew. Sust. Energy Rev. 89,
51–60.

Sheffield Solar, 2016. Microgen Database. Sheffield Solar-University of Sheffield.
< http://www.microgen-database.org.uk> .

Shin, Hunyoung, Baldick, Ross, 2017. Plug-in electric vehicle to home (V2H) operation
under a grid outage. IEEE Trans. Smart Grid 8 (4), 2032–2041.

Silva, R. Amaro, Brito, M.C., 2018. Impact of network layout and time resolution on
spatio-temporal solar forecasting. Solar Energy 163, 329–337.

Stoffel, T., Andreas, A., 1981. NREL Solar Radiation Research Laboratory (SRRL): Baseline
Measurement System (BMS); golden, colorado (data). Technical report, National
Renewable Energy Lab. (NREL), Golden, CO (United States).

Su, Han-I, Gamal, Abbas El, 2013. Modeling and analysis of the role of energy storage for
renewable integration: power balancing. IEEE Trans. Power Syst. 28 (4), 4109–4117.

Tascikaraoglu, Akin, Sanandaji, Borhan M., 2016. Short-term residential electric load
forecasting: a compressive spatio-temporal approach. Energy Build. 111, 380–392.

Taylor, Jamie, Leloux, Jonathan, Everard, Aldous M., Briggs, Julian, Buckley, Alastair,
2015. Monitoring thousands of distributed PV systems in the UK: Energy production
and performance. PVSAT-11, Leeds.

Tewari, Saurabh, Geyer, Charles J., Mohan, Ned, 2011. A statistical model for wind power
forecast error and its application to the estimation of penalties in liberalized markets.
IEEE Trans. Power Syst. 26 (4), 2031–2039.

Tu, Chunming, He, Xi, Shuai, Zhikang, Jiang, Fei, 2017. Big data issues in smart grid – a
review. Renew. Sust. Energy Rev. 79, 1099–1107.

Vick, Brian D., Myers, Daryl R., Boyson, William E., 2012. Using direct normal irradiance
models and utility electrical loading to assess benefit of a concentrating solar power
plant. Solar Energy 86 (12), 3519–3530.

Vitter, Jeffrey Scott, Webber, M.E., 2018. A non-intrusive approach for classifying residential
water events using coincident electricity data. Environ. Model. Software 100, 302–313.

Xie, Yu, Sengupta, Manajit, Dooraghi, Mike, 2018. Assessment of uncertainty in the nu-
merical simulation of solar irradiance over inclined PV panels: new algorithms using
measurements and modeling tools. Solar Energy 165, 55–64.

Xue, Peng, Hong, Tianzhen, Dong, Bing, Mak, Cheukming, 2017. A preliminary in-
vestigation of water usage behavior in single-family homes. In: Building Simulation,
vol. 10. Springer, pp. 949–962.

Yang, Dazhi, 2018. Solardata: an R package for easy access of publicly available solar
datasets. Solar Energy.

Yang, Dazhi, Dong, Zibo, 2018. Operational photovoltaics power forecasting using sea-
sonal time series ensemble. Solar Energy 166, 529–541.

Yang, Dazhi, Quan, Hao, Disfani, Vahid R., Liu, Licheng, 2017. Reconciling solar fore-
casts: geographical hierarchy. Solar Energy 146, 276–286.

Yang, Dazhi, Quan, Hao, Disfani, Vahid R., Carlos, D., Rodriguez-Gallegos, Carlos D.,
2017. Reconciling solar forecasts: Temporal hierarchy. Solar Energy 158, 332–346.

Yang, Dazhi, Gueymard, Christian, Kleissl, Jan, 2018. Editorial: submission of data article
is now open. Solar Energy.

Yang, Handa, Kurtz, Ben, Nguyen, Dung, Urquhart, Bryan, Chow, Chi Wai, Ghonima,
Mohamed, Kleissl, Jan, 2014. Solar irradiance forecasting using a ground-based sky
imager developed at UC San Diego. Solar Energy 103, 502–524.

Zell, Erica, Gasim, Sami, Wilcox, Stephen, Katamoura, Suzan, Stoffel, Thomas, Shibli,
Husain, Engel-Cox, Jill, Subie, Madi Al, 2015. Assessment of solar radiation resources
in Saudi Arabia. Solar Energy 119, 422–438.

Zhang, Jie, Hodge, Bri-Mathias, Florita, Anthony, 2013. Investigating the correlation
between wind and solar power forecast errors in the western interconnection. In:
ASME 2013 7th International Conference on Energy Sustainability collocated with
the ASME 2013 Heat Transfer Summer Conference and the ASME 2013 11th
International Conference on Fuel Cell Science, Engineering and Technology,
American Society of Mechanical Engineers. pp. V001T16A003–V001T16A003.

Zhang, Jie, Hodge, Bri-Mathias, Florita, Anthony, 2014. Joint probability distribution and
correlation analysis of wind and solar power forecast errors in the western inter-
connection. J. Energy Eng. 141 (1), B4014008.

Zhang, Jie, Florita, Anthony, Hodge, Bri-Mathias, Lu, Siyuan, Hamann, Hendrik F.,
Banunarayanan, Venkat, Brockway, Anna M., 2015. A suite of metrics for assessing
the performance of solar power forecasting. Solar Energy 111, 157–175.

Zhen, Zhao, Wang, Fei, Sun, Yujing, Mi, Zengqiang, Liu, Chun, Wang, Bo, Lu, Jing, 2015.
SVM based cloud classification model using total sky images for PV power fore-
casting. In: 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT). IEEE, pp. 1–5.

Zhou, Kaile, Chao, Fu., Yang, Shanlin, 2016. Big data driven smart energy management:
from big data to big insights. Renew. Sust. Energy Rev. 56, 215–225.

C. Feng, et al. Solar Energy 188 (2019) 1369–1379

1379

http://refhub.elsevier.com/S0038-092X(19)30669-3/h0110
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0110
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0110
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0120
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0120
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0125
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0125
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0135
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0135
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0135
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0140
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0140
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0140
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0145
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0145
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0145
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0150
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0155
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0160
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0160
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0160
https://cran.r-project.org/package=meteoForecast
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0170
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0170
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0175
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0175
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0175
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0180
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0180
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0180
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0185
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0185
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0185
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0190
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0190
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0195
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0195
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0200
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0200
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0200
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0200
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0205
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0205
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0205
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0210
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0210
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0210
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0225
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0225
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0230
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0230
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0235
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0235
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0235
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0235
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0240
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0240
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0245
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0245
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0245
https://dataport.cloud
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0255
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0255
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0255
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0260
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0260
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0260
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0260
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0265
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0265
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0270
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0270
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0275
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0275
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0275
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0275
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0280
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0280
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0280
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0285
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0285
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0285
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0290
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0290
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0290
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0300
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0300
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0300
http://www.microgen-database.org.uk
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0310
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0310
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0315
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0315
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0325
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0325
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0330
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0330
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0340
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0340
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0340
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0345
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0345
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0350
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0350
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0350
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0355
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0355
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0360
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0360
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0360
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0365
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0365
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0365
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0370
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0370
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0375
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0375
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0380
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0380
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0385
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0385
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0390
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0390
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0395
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0395
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0395
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0400
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0400
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0400
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0410
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0410
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0410
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0415
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0415
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0415
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0420
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0420
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0420
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0420
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0425
http://refhub.elsevier.com/S0038-092X(19)30669-3/h0425

	OpenSolar: Promoting the openness and accessibility of diverse public solar datasets
	Introduction
	NREL Solar Power Data for Integration Studies (SPDIS) dataset
	Overview
	Potential usage
	Data pre-processing
	Quality control

	NREL Solar Radiation Research Laboratory (SRRL) dataset
	Overview
	Potential usage
	Quality control
	Data pre-processing

	Sheffield Solar – Microgen database
	Overview
	Potential usage
	Data pre-processing

	The Dataport database
	Overview
	Potential usage
	Data pre-processing
	Quality control

	Benchmark modeling for short-term solar forecasting
	Conclusion and future work
	Example use case 1: temporal reconciliation with the Microgen dataset
	Example use case 2: geographical reconciliation with the SPDIS dataset
	OpenSolar Python library
	Supplementary material
	References




