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H I G H L I G H T S

• Develop a weather scenario generation-based probabilistic forecasting model.• Use Copula to model correlation between weather variables.• Gibbs sampling is adopted to improve the weather scenario generation efficiency.• Different weather scenario generation models are compared.• Improve pinball loss by up to 140% compared to benchmark models.
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A B S T R A C T

Probabilistic solar power forecasting plays an important role in solar power grid integration and power system
operations. One of the most popular probabilistic solar forecasting methods is to feed simulated explanatory
weather scenarios into a deterministic forecasting model. However, the correlation among different explanatory
weather variables are seldom considered during the scenario generation process. This paper presents an im-
proved probabilistic solar power forecasting framework based on correlated weather scenario generation.
Copula is used to model a multivariate joint distribution between predicted weather variables and observed
weather variables. Massive weather scenarios are obtained by deriving a conditional probability density function
given a current weather prediction by using the Bayesian theory. The generated weather scenarios are used as
input variables to a machine learning-based multi-model solar power forecasting model, where probabilistic
solar power forecasts are obtained. The effectiveness of the proposed probabilistic solar power forecasting fra-
mework is validated by using seven solar farms from the 2000-bus synthetic grid system in Texas. Numerical
results of case studies at the seven sites show that the developed probabilistic solar power forecasting metho-
dology has improved the pinball loss metric score by up to 140% compared to benchmark models.

1. Introduction

Solar power is one of the most promising renewable energy sources in
the world due to its sustainability. According to the U.S. solar market insight
report, the U.S. has installed 67 GW of photovoltaic (PV) by Q1 2019, with
an expectation of doubling the installed PV capacity by 2024 [1]. However,
the uncertain and variable nature of PV power makes it challenging to be
integrated into power systems, particularly at ever-increasing level of solar
penetration. Therefore, accurate solar forecasting is needed to assist power
system operation and planning, from day-ahead forecasts for unit commit-
ment to minutes- and hours-ahead forecasts for economic dispatch.

A collection of deterministic solar power forecasting methods have been
developed in the literature in the past years. Solar power forecasting
methods can be generally classified into three groups [2]: (1) Physical

models, which are usually developed based on the interaction between
sophisticated meteorological variables and solar radiation. Physical solar
forecasting models include sky imagery models [3], numerical weather
prediction (NWP) models [4], and satellite imaging models [5]. Physical
models usually require high computation cost, and have better performance
than purely statistical time series approaches in longer prediction time
horizons (e.g., day-ahead and week-ahead) [6]. (2) Statistical models, which
extract information from historical data and quantify the relationship be-
tween solar power/irradiance and explanatory variables or lagged time
series to generate forecasts. Statistical models are cost-saving since they do
not require any expensive simulations beyond historical solar power gen-
eration after being trained. However, the prediction performance of statis-
tical models drops with the increase of prediction time horizon [7]. (3)
Hybrid or ensemble models, which combine two or more methods together
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to obtain globally optimal forecasts. Hybrid methods have shown better
predictive performance compared to single models [8].

PV power output is highly dependent on external weather conditions
such as solar radiation and temperature [9]. Therefore, it is challenging to
get accurate forecasts under different weather conditions. To better account
for the solar power uncertainty and variability, probabilistic solar power
forecasts are needed. Probabilistic solar power forecasts usually take the
form of prediction intervals, quantiles, or predictive distributions. Generally,
probabilistic solar power forecasting methods can be classified into para-
metric and nonparametric approaches [10]. Parametric approaches gen-
erally require low computational cost since a prior assumption of the pre-
dictive distribution shape is made before the parameter estimation. One of
the most popular parametric methods is to convert point forecasts to
probabilistic forecasts through a pre-defined predictive distribution. For
example, Sun et al. [10] built a predictive distribution pool with four dif-
ferent predictive distributions, and the distribution with the minimum
pinball loss was selected as the best predictive distribution. However, stu-
dies showed that unimodal distributions might not accurately quantify the
variability of solar power due to the multi-modality nature in solar power
predictive distributions [11,12]. Nonparametric approaches are distribution
free, and their predictive distributions are inferred through observations or
scenarios. To the best of authors’ knowledge, most of probabilistic solar
power forecasting papers in the literature focused on nonparametric
methods. In a review study by Van der Meer et al. [13], the family of
nonparametric approaches dominate methods of probabilistic solar power
forecasting by accounting for 69% of all reviewed studies. These nonpara-
metric probabilistic solar forecasting methods mainly include quantile re-
gression-based methods [14,15], Gaussian process [16,17], simulating pre-
dictors [18,19], gradient boosting-based methods [20], and analog
ensemble methods [21,22]. Among these aforementioned probabilistic solar
power forecasting models, quantile regression-based methods and simu-
lating predictors are more popular due to their simplicity. For quantile re-
gression-based methods, parameters of different regression models could be
optimized through minimizing a loss function. Therefore, different regres-
sion models could be integrated with probabilistic forecasting metrics such
as pinball loss, continuous ranked probability score, and brier score. For
example, Wang et al. [23] formulated quantile regression as an optimization
problem to minimize the pinball loss. Three regression models, namely,
neural network, random forests, and gradient boosting, were integrated

with quantile regression to generate probabilistic forecasts.
For methods with simulating predictors, massive scenarios are generated

as inputs of regression models. Weather scenario generation has been
widely used in the literature for probabilistic forecasts due to its simplicity
and accessibility. Weather scenario generation methods can be generally
classified into three categories [24]: (i) fixed-date method, (ii) shifted-date
method, and (iii) bootstrap method. The fixed-date method assigns the
weather profile of historical years to the current year. The number of sce-
narios equals to the number of years the weather profile is available. For
example, Liu et al. [25] used six years historical weather data as input
scenarios to a quantile regression averaging model. The shifted-date method
generally shifts the historical weather profile with a number of days. Then
these shifted weather profiles are treated as weather scenarios of the current
year. The number of scenarios generated by the fixed-date and shifted-date
methods is limited by the length of the weather profile and data availability.
Bootstrap is a method of computational inference based on resampling a
dataset. Breinl et al. [26] adopted a block bootstrap method to generate
precipitation and temperatures scenarios. However, scenarios generated
from block bootstrap heavily relied on the data itself and block size, where
extreme weather observations tend to be undervalued. The three weather
scenario generation methods mentioned above were compared in [24]
through quantile score, complexity, and number of scenarios based on the
GEFCom2014 dataset. Results showed that among the bootstrap, fixed-date,
and shifted-date methods, no single method outperforms others in all as-
pects. In addition, a study has shown that the exogenous atmospheric
variables used in solar power forecasting are spatial-temporal correlated
[27]. However, all the aforementioned weather scenario generation
methods didn’t take the correlations among weather variables into account.
Ignoring the correlation characteristics in weather scenario generation
modeling may lead to inaccurate results in simulated predictors, which may
further affect the probabilistic forecasting accuracy.

One of the most intuitive ways of modeling correlation among different
variables is to use a multivariate joint distribution. To address the challenge
of modeling high dimensional multivariate joint distributions, the Copula
theory can be used. Based on the Sklar’s theorem, the joint distribution can
be modeled through univariate marginal distributions and a Copula [28]. In
[29], a Copula method was adopted to model the dependencies between
solar power and ambient temperature. However, high dimensional matrices
are involved in sampling from the conditional distributions, which is not

Nomenclature

Acronyms

PV photovoltaic
KDE kernel density estimation
GHI global horizontal irradiance
WS wind speed
TEMP temperature
EM expectation maximization
CDF cumulative density function
NWP numerical weather prediction
NRMSE normalized root mean square error
NMAE normalized mean absolute error
PS persistence of cloudiness
QR quantile regression
FD fixed-date
SD shifted-date
BS bootstrap
PIs prediction intervals
PDF probability density function
GMM Gaussian mixture model
wsp WPF weather scenario generation-based probabilistic fore-

casting

M3 machine learning-based multi-model
HA hour ahead

Variables and Functions

f (·)G probability density function of Gaussian mixture model
g (·)i probability density function of the ith Gaussian mixture

component
F (·)G cumulative density function of Gaussian mixture model
erf (·) Gaussian error function
C (·) Copula function
c (·) Copula density function

Parameters

t time index
qm t, mth quantile of solar power at time t
NG number of Gaussian mixture model components
f vector of weather forecasts
a vector of weather observation
xf j, forecast value of the jth weather variable
xa j, observation of the jth weather variable
Lm t, pinball loss of the mth quantile at time t
pt solar power observation at time t
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computationally efficient.
To address the aforementioned challenges, in this paper, we seek to

develop a probabilistic solar power forecasting method based on
weather scenario generation considering inherent correlation among
different weather variables. The principle of this method is the use of a
multivariate joint probability density function (PDF) of historical actual
weather variables and historical predicted weather variables. The
conditional distribution of historical actual weather given historical
weather forecasts is deduced through the Bayesian theory, which is
then used (in conjunction with current weather deterministic forecasts)
to generate massive weather scenarios through an efficient Gibbs
sampling model. By feeding these weather scenarios as inputs into a
pre-trained deterministic solar forecasting model, we can generate a
same number of solar power scenarios at each time step. Probabilistic
forecasts are finally generated in the form of quantiles through the
empirical distribution of solar power scenarios. Main contributions of
this paper are summarized as follows:

1. An improved probabilistic solar power forecasting method is de-
veloped based on weather scenario generation;

2. Copula is used to model the correlation among weather variables to
improve the performance of weather scenario generation;

3. A Gaussian mixture model is used to accurately fit the marginal
distributions of different weather variables;

The rest of the paper is organized as follows. Section 2 describes the
proposed weather scenario generation-based probabilistic solar power
forecasting method, which consists of a deterministic forecasting
method, Gaussian mixture model-based marginal weather probability
distribution modeling, and a Copula-based Gibbs sampling model.
Section 3 applies the developed probabilistic solar forecasting method
to 7 solar farms and compares the proposed method with four bench-
mark probabilistic solar power forecasting models. Concluding remarks
and future work are discussed in Section 4.

2. Probabilistic forecasting framework

The overall framework of the developed weather scenario genera-
tion-based probabilistic solar power forecasting (wsp-SPF) method is
illustrated in Fig. 1. The two major steps are weather scenario gen-
eration and probabilistic solar power forecasting. In each major step,
there are several sub-steps which are briefly described as follows:

1. Step 1.1: A Machine Learning-based Multi-Model (M3) forecasting
framework is adopted to generate short-term deterministic weather
forecasts (i.e., 1-h-ahead (1HA)), and train the deterministic solar
power forecasting model (blue box).

2. Step 1.2: A Gaussian mixture model (GMM) is used to fit the PDFs of
historical actual weather and historical forecasted weather.

3. Step 1.3: The conditional joint distribution of historical actual
weather given historical weather forecasts is constructed based on
the Copula theory.

4. Step 1.4: A large number of weather scenarios are generated
through the conditional distribution via Gibbs sampling.

5. Step 2: The simulated weather predictors are fed into the pre-trained
M3 deterministic solar power forecasting model to generate prob-
abilistic solar power forecasts.

2.1. Machine learning-based multi-model (M3) deterministic forecasting

In this paper, the M3 model developed in our previous work [6] is
adopted to train deterministic forecasting models (i.e., deterministic
weather forecasting model and deterministic solar power forecasting
model). M3 is ensembled by multiple models from a pool of state-of-the-
art machine learning-based forecasting models. To be more specific,
multiple sets of deterministic forecasts are generated by using different
machine learning algorithms with different kernels in the first layer.
Then, the forecasts are blended by another machine learning algorithm
in the second layer to generate final forecasts. Machine learning algo-
rithms used in the M3 method include artificial neural networks
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Fig. 1. Overall framework of weather scenario generation-based probabilistic solar power forecasting.
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(ANNs), support vector regression (SVR), gradient boosting machines
(GBMs), and random forests.

2.2. Weather distribution modeling

In the literature, marginal distributions of weather variables are
commonly modeled by unimodal distributions such as Beta and Gamma
[30] or nonparametric distributions such as kernel density estimation
(KDE) [31]. However, unimodal distributions may not accurately
quantify the variability of weather variables and nonparametric dis-
tributions are challenging to be solved analytically [32]. Mixture dis-
tributions have been widely utilized in statistics to approximate multi-
modal distributions. To accurately characterize the variability of
weather variables, GMM is adopted in this paper to model the weather
variables. Three weather variables are considered in this paper, which
are global horizontal irradiance (GHI), wind speed (WS), and tem-
perature (TEMP). The PDF of GMM is formulated as follows:

=
=

f x N µ g x µ, , , ,G G i i i
i

N

i i i i
1

G

(1)

where NG is the number of mixture components, U µ U( )i is an ex-
pected value vector, ( )i is a standard deviation vector, and

( )i is a weight vector. Each component g x µ( ; ,i i) follows a
normal distribution, which is expressed as:
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The GMM distribution has two constraints: (1) the integral of Eq. (1)
equals unity, and (2) the summation of weight parameters equals unity
as well, which are expressed as follows:
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The parameters of GMM are estimated by the expectation maximization
(EM) algorithm. The goal of EM is to maximize the likelihood function
with respect to parameters. More details about EM can be found in [33].
The cumulative density function (CDF) (FG) corresponding to the esti-
mated PDF is expressed as:

= +
=

F x N µ erf
µ x
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i

N

i i
i
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(5)

where C is an integral constant, and erf (·) is a Gaussian error function.

2.3. Weather scenario generation

Once marginal distributions of historical actual and predicted
weather variables are defined, the correlation among weather variables
can be modeled through a multivariate joint distribution. The para-
meter xf j, denotes the forecast value of the jth weather variable, and
xa j, denotes the actual value of the jth weather variable. We assume

there are J weather variables. The parameter f denotes the J-dimen-
sion vector of weather forecasts, i.e., ( …x x, ,f f J,1 , ); a denotes the J-
dimension vector of actual weather, i.e., ( …x x, ,a a J,1 , ). The joint CDF
and joint PDF are expressed as:

= … …F a f P X x X x X x X x( , ) ( , , , , , )a a a J a J f f f J f J,1 ,1 , , ,1 ,1 , , (6)

=
… …

f a f F a f
X X X X

, ( , )J

a a J f f J

2

,1 , ,1 , (7)

Therefore, the weather scenario generation given predicted weather
becomes sampling a multivariate distribution of the actual weather a,
i.e., ( …x x, ,a a J,1 , ), conditioning on the predicted weather f, i.e.,
( …x x, ,f f J,1 , ).

= … = … =F a f P X x X x X x X x( ) ( , , , , )a a a J a J f f f J f J,1 ,1 , , ,1 ,1 , , (8)

=
…

f a f F a f
X X

( )J

a a J,1 , (9)

In this study, Copula is used to model the inherent correlation
among weather variables, and the conditional multivariate distribution
is modeled based on the aforementioned weather marginal distribu-
tions. Given a multivariate joint distribution, it is challenging to di-
rectly generate samples due to the high dimensionality of conditioning
variables. In this paper, Gibbs sampling is applied to sample the mul-
tidimensional random variables by sequentially sampling each com-
ponent.

2.3.1. Gibbs sampling
Gibbs sampling seeks to iteratively sample only one variable or a

block of variables at a time from its distribution conditioned on the
remaining variables [34]. Therefore, Gibbs sampling converts sampling
a multivariate distribution into sampling a set of conditional univariate
distributions. The pseudocode of Gibbs sampling is illustrated in
Algorithm 1. Note in this study, we use the forecasted weather as the
initial input.

Algorithm 1. Gibbs sampling
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2.3.2. Conditional distribution modeling
Copula is one of the most widely used methods for modeling the

dependency among random variables. Based on Sklar’s theorem [35],
any multivariate joint distribution can be written in terms of univariate
marginal distribution functions and a copula that describes the de-
pendence structure between the variables. Therefore, the joint CDF in
Eq. 6 can be written as:

= … … =F a f C F x F x F x F x C S T( , ) ( ( ), , ( ), ( ), , ( )) ( , )a a J f f J,1 , ,1 , (10)

where,

= …S F x F x( ), , ( )a a J,1 , (11)

= …T F x F x( ), , ( )f f J,1 , (12)

F x( )a j, and F x( )f j, denote the marginal CDFs of actual weather and
marginal CDF of predicted weather, respectively. C (·) is the Copula
function.

Similarly, the joint PDF of actual weather and predicted weather
can be expressed as:

=
=

f a f c S T f x f x, , · ( ) ( )
j

J

a j f j
1

, ,
(13)

where f x( )a j, and f x( )f j, are marginal PDFs of Xa j, and Xf j, , respectively,
modeled by using the aforementioned GMM distribution based on his-
torical actual and forecasting weather. c (·) is the density of Copula.
Then, the conditional univariate distribution of weather variable Xa j,
can be deduced from the Bayesian formula, given by:
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where the numerator can be written as:

= = =
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and based on Eq. (13), the denominator can be written as:

= = =
=
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Note that in Eq. (16), we use c (·) instead of c (·) since the dimension of
Copula density here is J2 1 instead of J2 . Overall, based on Eqs. (15)
and (16), the conditional univariate CDF can be expressed as:

… …

=
… … …

+

+

F x x x x x f

C
X X X X X X c

, , , , , ,

(·) · 1
(·)

a j a a j a j a J

J
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, ,1 , 1 , 1 ,

2 1

,1 , 1 , 1 , ,1 , (17)

The conditional distribution of the actual weather variable given
weather forecasts can be trained by using historical actual and fore-
casted weather data. With any given deterministic weather forecasts,
the Gibbs sampling model and the trained conditional CDF in Eq. (17)
are used together to generate a large number of weather scenarios. In
this study, the Copula is selected through the “xvCopula” function from
the Copula package [36] in R based on k-fold cross-validation.

2.4. Probabilistic solar power forecasting

Once weather scenarios are given, a large number of solar power
scenarios can be generated through a deterministic forecasting model.
Assuming that we generate N weather scenarios for each hour, then we
will have N deterministic solar power forecast values for each hour.
Therefore, based on the empirical distribution function, the 1st to 99th
percentiles of solar power can be calculated for each hour, thus gen-
erating probabilistic solar power forecasts. Though any deterministic
forecasting model is capable of generating solar power forecasts, we
adopted the M3 model mentioned in Section 2.1.

3. Case studies and results

This section describes the dataset used in the paper and analyzes the
probabilistic solar power forecasting results based on weather scenario
generation. The objectives of this study are: (1) develop an improved
probabilistic solar power forecasting method based on weather scenario
generation considering correlation among different weather variables;
(2) compare different state-of-the-art weather scenario generation
methods; (3) integrate Gibbs sampling to the scenario generation pro-
cess to improve computational efficiency.

3.1. Data summary

The developed wsp-SPF framework is evaluated at 7 solar farms in
Texas that are selected from the ACTIVSg2000 system, i.e., a 2000-bus
synthetic grid on the footprint of Texas [37]. The data information at
the 7 selected solar sites is briefly summarized in Table 1. To ensure the
generality and diversity of data, some of the selected solar farms are
closed to each other (e.g., C2 and C3; C5, C6, and C7), and some of the
solar farms are geographically dispersed (e.g., C1 and C4). In addition,
all the selected solar farms have different capacity which ranges from
1.05 MW to 230 MW. To match the solar power with corresponding
weather information, the weather data is collected from the National
Solar Radiation Database (NSRDB) [38]. The NSRDB includes solar
radiation and other meteorological information (e.g., wind speed, air
temperature, solar zenith angle) over the United States from 1998 to
2017 computed by the National Renewable Energy Laboratory’s
(NREL’s) Physical Solar Model (PSM), with a 30 min temporal resolu-
tion. The solar power is generated based on NSRDB weather data using
System Advisor Model (SAM) [39], and shares the same resolution with
weather data. In this study, the duration of the collected data at the 7
selected solar sites spans four years from January 1st 2008 to December
31st 2011. Fig. 2 summaries the data partition of the case study. For all
the 7 locations, the first 3/4 of the data is used as training data, in
which the first 2/3 is used to train the deterministic weather forecasting
model and the remaining 1/3 of the training data is used to train the
conditional weather scenario model. The accuracy of the forecasts is
evaluated by the remaining 1/4 of data. The number of weather sce-
narios generated from the conditional distribution is set as Ns = 5,000.
Though the developed wsp-SPF method is capable of generating

Table 1
Data summary of the selected 7 solar sites

Site Name Site ID Lat. Long. Capacity (MW) State

C1 3 29.58 −104.29 10 TX
C2 21 32.26 −101.41 1.5 TX
C3 22 32.25 −101.42 230 TX
C4 109 29.32 −100.38 29.7 TX
C5 286 30.55 −97.69 1.05 TX
C6 287 30.55 −97.69 22.5 TX
C7 288 30.54 −97.69 5.5 TX
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forecasts at multiple forecasting horizons, only 1-h-ahead solar power
forecasts are explored in this study.

3.2. Deterministic forecasting results

Since the Copula-based weather scenario generation method is a
two-step method, it is important to compare the performance of dif-
ferent deterministic forecasting models in the first step. Normalized
indices of standard metrics like root mean squared error and mean
absolute error, i.e., NRMSE and NMAE, are adopted to evaluate the
performance of deterministic forecasts. They are defined by:

= ×
=

NMAE
T

x x
x

1 100%
t

T
t t

max1 (18)

= ×=NRMSE
x

x x

T
1

( )
100%

max

t

T

t t
1

2

(19)

where xt is the forecasted weather variable, xt is the observation of the
weather variable, xmax is the maximum observation of the corre-
sponding weather variable, and T is the sample size.

A smaller NRMSE or NMAE indicates better forecasting perfor-
mance. The 1HA deterministic forecasting errors by using the M3

Table 2
1HA deterministic weather forecasting results by using M3 and PS.

Model Feature Metric Site

C1 C2 C3 C4 C5 C6 C7

M3 GHI NMAE(%) 4.32 3.98 4.11 4.23 3.53 3.72 3.48
NRMSE(%) 7.16 6.59 6.81 6.99 5.91 6.21 5.94

WS NMAE(%) 1.82 1.96 1.89 1.83 1.77 1.77 1.81
NRMSE(%) 2.74 2.92 2.77 2.60 2.47 2.49 2.53

TEMP NMAE(%) 1.91 1.68 1.69 1.69 1.35 1.36 1.36
NRMSE(%) 2.46 2.19 2.19 2.15 1.79 1.79 1.79

PS GHI NMAE(%) 6.79 6.63 6.63 6.62 6.59 6.60 6.57
NRMSE(%) 10.84 10.79 10.79 10.95 11.00 11.01 10.94

WS NMAE(%) 3.10 3.61 3.61 3.34 3.31 3.31 3.31
NRMSE(%) 4.60 5.27 5.27 4.85 4.91 4.91 4.91

TEMP NMAE(%) 2.57 2.23 2.23 2.31 2.12 2.12 2.11
NRMSE(%) 3.40 3.07 3.07 3.13 2.94 2.94 2.94

T2
Historical Actual 

Weather and Solar 
Power

Historical Predicted 
Weather

T3
Predicted Weatherand

Weather Scenarios

Solar Power Scenarios

Training Deterministic Solar 
Power Forecasting Model

Testing

Training Deterministic 
Weather Forecasting 

Model

Training Conditional 
Weather Scenario 
Generation Model

T1
Historical Actual 

Weather and Solar 
Power

Fig. 2. Data splitting for model training and testing.
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deterministic forecasting model at the selected locations are summar-
ized in Table 2. The persistence of cloudiness method (PS) [40] has
been proved to be accurate in the shorter forecasting period. Therefore,
to show the superiority of the M3 deterministic forecasting model, the
PS method is adopted as the baseline. Overall, the accuracies of the M3
deterministic forecasts are better than those of persistence of cloudiness
forecasts.

3.3. Benchmarks and comparison settings

In this paper, four benchmark models are selected for comparison,
including one single probabilistic forecasting baseline model, and three
other weather scenario generation-based models. The single benchmark
model is quantile regression (QR). The three benchmark weather sce-
nario generation models are fixed-date (FD), shifted-date (SD), and
bootstrap (BS) methods, which have been used by Xie et al. in [24].
Note that the same M3 deterministic forecasting model is used in the
three weather scenario generation-based models.
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Fig. 3. 1HA probabilistic solar power forecasts.
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1. FD: The fixed-date method assigns the weather profile of historical
years to the current year. The number of scenarios equals to the
number of years the weather profiles is available. Assume that m
years weather profiles are available, we could generate m weather
scenarios at each time step.

2. SD: The shifted-date method generally shifts the historical weather
profile with a number of days. Then these shifted weather profiles
are treated as weather scenarios of the current year. Assume that m
years weather profiles are available, we could generate +n m(2 1)
weather scenarios at each time step, where n is the number of days
shifted forward or backward. The n is set to be 4 in this study.

3. BS: The bootstrap method divides the weather profile of each his-
torical year into an equal length of blocks, and then randomly picks
the blocks with replacement from any of the historical years to form
a new temperature profile. In this study, we set the block length be
10. Overall, there are 37 blocks, where each of the first 36 blocks
has a length of 10 and the th37 block has a length of 5.

The reasons for choosing these four baseline models are: (i) QR is a
widely used method in probabilistic forecasting, which allows us to
explore the forecasting enhancement by considering weather scenario
generation; (ii) since a weather scenario generation model is included
in the proposed wsp-SPF method, it is important to compare the ac-
curacy of the proposed method with different weather scenario gen-
eration techniques. Note that the empirical probability distribution is
adopted to calculate the quantile forecasts. However, for the FD and SD
methods, the number of both weather and solar power scenarios is
limited. As a result, some of the adjacent quantiles may share a same
value.

3.4. Probabilistic forecasting results

Once solar power scenarios are generated, quantiles of the solar
power are calculated based on the empirical distribution of the gener-
ated scenarios.

With the estimated empirical predictive PDF of the solar power, the
quantiles q q,1 2, …, q99 can be calculated. To better visualize probabil-
istic forecasts, the 99 quantiles are converted into nine prediction in-
tervals (PIs) I ( =10, …, 90) in a 10% increment. Fig. 3(a) shows the
1HA probabilistic solar power forecasts of the C2 site from 2011-01-31
to 2011-02-03, generated from the proposed wsp-SPF model. It is
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Fig. 3. (continued)

Table 3
Normalized pinball loss and relative improvement of different models.

Model Site

C1 C2 C3 C4 C5 C6 C7

NPL wsp-SPF 1.77 1.62 1.75 2.13 1.35 1.49 1.46
M3-FD 1.86 2.07 2.08 2.43 2.38 2.38 2.34
M3-SD 3.08 3.11 3.11 2.99 3.12 3.11 3.11
M3-BS 3.09 3.43 3.74 2.94 3.74 3.27 3.29
QR 2.46 2.64 2.64 2.44 1.40 2.66 2.64

IP (%) M3-FD 5.08 27.78 18.86 14.08 75.00 59.73 60.27
M3-SD 74.01 91.97 77.71 40.37 128.68 108.72 113.01
M3-BS 74.58 111.72 113.71 38.02 140.44 119.46 125.34
QR 38.98 62.96 50.86 14.55 95.59 78.52 80.82

Note: The smallest normalized pinball loss value is in boldface. The highest
relative improvement with respect to wsp-SPF model is in italic.
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observed that at the entire representative period, the solar power rea-
sonably lies within the PIs. Fig. 3(b), (c), (d) and (e) show the prob-
abilistic forecasts generated from the baseline M3-FD, M3-SD, M3-BS,
and QR methods, respectively. It is seen that the PIs of the wsp-SPF
model in Fig. 3(a) is narrower than the PIs with other weather scenario
generation methods. This is due to that considering the correlation
among weather variables has improved the weather scenario genera-
tion accuracy. In addition, the PIs of wsp-SPF are smoother than those
of QR, which indicates stable and reliable probabilistic forecasts.
Among the three weather scenario generation-based baseline methods,
M3-BS outperforms M3-FD and M3-SD. It is mainly due to the limited
number of scenarios in FD and SD models. It is also observed that the
width of the PIs varies with the variability of solar power. For example,
when the solar power fluctuates more frequently, the PI tends to be
wider, and thereby the uncertainty in solar power forecasts is relatively
higher.

3.4.1. Pinball loss
Pinball loss is a widely used metric to evaluate the overall perfor-

mance of probabilistic forecasts, which is defined by:

=
× <

×L q p
q p p q

p q p q,
(1 ) ( ),

( ),m t m t t

m
m t t t m t

m
t m t t m t

, ,
100 , ,

100 , ,
(20)

where qm t, represents the mth quantile at time t, pt represents the solar
power observation at time t. To show the effectiveness of the developed
weather scenario generation-based probabilistic forecasting framework,
the normalized pinball loss (NPL) values of 1HA solar power forecasts
from different models and their relative improvement (IP) with respect
to wsp-SPF model are compared in Table 3. The sum of pinball loss is
averaged over all quantiles from 1% to 99% and normalized by the
solar power capacity. A lower pinball loss score indicates a better
probabilistic forecast. Results show that the proposed wsp-SPF model
gives the best performance. Moreover, the proposed wsp-SPF model has
improved the pinball loss by 5.08%-140.44% compared to the four
benchmark models, which validates the effectiveness of the proposed
method. It is interesting to see the highest NPL improvement is from C5,
which has the smallest solar capacity. This may be due to that solar
farms with smaller capacity are more susceptible to weather conditions,
thus the correlation between weather scenarios and PV power outputs
becomes stronger. In contrast, for the solar farm with the largest

Fig. 4. Reliability comparison of different models at different sites.
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capacity like C3, the NPL improvement is intermediate. Therefore,
there is no clear linear relationship between the NPL improvement
brought from weather scenario generation and the solar farm capacity.

The improvement may result from different factors such as geographic
location and capacity. Note that the wsp-SPF method has shown a
better accuracy than M3-FD, M3-SD, and M3-BS, which indicates the
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Fig. 5. Sharpness comparison of different models at different sites.
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improvement of the weather scenario generation by considering the
correlation among weather variables. Furthermore, the wsp-SPF model
outperforms QR, which shows the improvement by considering weather
scenario generation modeling. In addition to pinball loss, two more
standard metrics, i.e., reliability and sharpness, are also calculated to
assess the performance of wsp-SPF.

3.4.2. Reliability
Reliability (RE) stands for the correctness of a probabilistic forecast

that matches the observation frequencies [10]:

= ×RE
N

1 100%
(1 )

(21)

where N is the number of test samples, and (1 ) is the number of times
that the actual test samples lie within the th prediction interval. A
reliability plot shows whether a given method tends to systematically
underestimate or overestimate the uncertainty. In this study, the
nominal coverage rate ranges from 10% to 90% with a 10% increment.
Fig. 4 shows the reliability plots of the probabilistic solar power fore-
casts with different forecasting models at the 7 sites. A forecast presents
better reliability when the curve is closer to the diagonal. It is seen from
Fig. 4 that overall the proposed wsp-SPF has better reliability perfor-
mance than M3-FD, M3-SD, and M3-BS, indicating the enhancement
resulted from correlation modeling between weather variables. In ad-
dition, the proposed wsp-SPF model has shown similar reliability to QR,
while the PIs of wsp-SPF are narrower than those of QR, which secure
accuracy without sacrificing reliability. In addition, note that the re-
liability at C5 is worse than that at other solar farms, and C3 has the
best reliability. It is mainly because C5 has the smallest capacity, which
is susceptible to weather variation. In contrast, C3 has the largest ca-
pacity, which might be more reliable and stable.

3.4.3. Sharpness
Sharpness indicates the capacity of a forecasting system to forecast

extreme probabilities [28]. This criterion evaluates the predictions in-
dependently of the observations, which gives an indication of the level
of usefulness of the predictions. For example, a system that provides
only uniformly distributed predictions is less useful for decision-making
under uncertainty. Predictions with perfect sharpness are discrete pre-
dictions with a probability of one (i.e., deterministic predictions). The
sharpness is measured by the average size of the prediction intervals.
The sharpness plots of wsp-SPF and four baseline models at different
sites are compared in Fig. 5. The expected interval size increases with
increasing the nominal coverage rate, and the sharpness of the proposed
wsp-SPF model is significantly better than that of the four baseline
models. Overall, the interval size of the proposed cp-AWPF model
ranges from 1% to 10%, which indicates low sharpness. In addition,
wsp-SPF has significantly better sharpness than M3-FD, M3-SD, and
M3-BS at all sites, which validates the enhancement of correlation
modeling in weather scenario generation. Since all the sites share low
sharpness, it is hard to conclude the relationship between site capacity
and sharpness. Moreover, it is seen that for solar farms in the same
region (similar longitude and latitude), the sharpness is also similar.
This characteristic may be used for solar resource assessment.

4. Conclusion

In this paper, a weather scenario generation-based probabilistic
solar power forecasting framework was developed. Gaussian mixture
model was used to accurately model the weather marginal distribu-
tions. Copula was adopted to model the correlation among different
weather variables through a high-dimensional joint distribution. Gibbs
sampling was applied on the conditional CDF of the joint distribution to
generate a large number of weather scenarios. Then, these weather
scenarios are fed into a machine learning-based multi-model

deterministic forecasting model to generate probabilistic solar power
forecasts. Results at 7 selected solar farms showed that:

1. wsp-SPF could reduce the pinball loss score by up to 140% com-
pared to four benchmark models.

2. The GMM model has shown better goodness-of-fit to weather dis-
tribution than single-distribution models and KDE.

3. Considering correlation among weather variables could enhance
weather scenario generation, thus providing better probabilistic
forecasting accuracy.

4. The developed wsp-SPF framework is robust for solar farms at dif-
ferent locations with different capacities.

5. wsp-SPF has shown better sharpness than models without using
weather scenario generation and models with other weather sce-
nario generation methods (i.e., FD, SD, and BS). The reliability of
wsp-SPF is close to the ideal diagonal, which indicates reasonable
reliability.

In summary, the use of probabilistic solar forecasts is still at its early
stage. Probabilistic forecasts are only used in a primitive way in most
systems, and there is not a systematic way to integrate them into system
operation and scheduling routines. However, operators start to realize
the importance of probabilistic forecasts in shaping more cost-effective,
stable, and reliable power systems. The proposed wsp-SPF framework
could be applied in the decision-making process of real-time unit
commitment and economic dispatch and to inform the system operator
of excessive ramp rates. In addition, this proposed wsp-SPF framework
can also be used to promote the integration of probabilistic solar power
forecasts in power systems by determining the requirements of ancillary
services, such as non-spinning reserves and ramping reserves. Potential
future work will (i) utilize the probabilistic solar power forecasting
model in stochastic power system operations, and (ii) explore the in-
fluence of spatio-temporal correlations on weather scenario generation.
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