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Abstract—Both deterministic and probabilistic load forecasting
(DLF and PLF) are of critical importance to reliable and eco-
nomical power system operations. However, most of the widely
used statistical machine learning (ML) models are trained by
optimizing the global performance, without considering the local
behaviour. This paper develops a two-step short-term load fore-
casting (STLF) model with Q-learning based dynamic model
selection (QMS), which provides reinforced deterministic and
probabilistic load forecasts (DLFs and PLFs). First, a determinis-
tic forecasting model pool (DMP) and a probabilistic forecasting
model pool (PMP) are built based on 10 state-of-the-art ML
DLF models and 4 predictive distribution models. Then, in the
first-step of each time stamp, a Q-learning agent selects the
locally-best DLF model from the DMP to provide an enhanced
DLF. At last, the DLF is input to the best PLF model selected
from the PMP by another Q-learning agent to perform PLF in
the second-step. Numerical simulations on two-year weather and
smart meter data show that the developed STLF-QMS method
improves DLF and PLF by 50% and 60%, respectively, compared
to the state-of-the-art benchmarks.

Index Terms—Load forecasting, machine learning, rein-
forcement learning, probabilistic forecasting, dynamic model
selection.

NOMENCLATURE

p, q The probability and quantile.
ŷ A deterministic load forecast.
μ, σ , σ ∗, σ̂ ∗ The mean, standard deviation, optimal stan-

dard deviation, and the pseudo standard
deviation of predictive distributions.

A, a, ai, a∗ The action space, the action vector, the ith
action, and the optimal action.

Q, Q(s, a), Q∗ The Q-table, Q-table element, and optimal
policy.

R, R(s, a) The reward matrix and reward function.
S, s, si The state space, the state vector, and the ith

state.
Ttd, Ttp The Q-learning training datasets.
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Tcd, Tcp The Q-learning processing datasets.
Xd, Xts, Xp Training datasets for DLF models, SVR

surrogate models, and PLF models.
Xv, XE The validation and testing datasets.
ŶDi , Ŷ∗D, Ŷ∗P Vectors of DLFs generated by the ith

model, the Q-learing reinforced DLFs, and
Q-learing reinforced PLFs.

Di, Pj The ith DLF model and the jth PLF model.
�i The ith DLF algorithm.
�Pj The SVR surrogate model corresponding to

jth predictive distribution.
DQ, PQ The developed Q-learning reinforced DLF

model and PLF model.
Mi,j, MQ2 Model with the ith DLF model in the first

step and the jth PLF model in the second
step, and the developed two-step model with
QMS in both steps.

F(·), F−1(·) The CDF function and its corresponding
inverse function.

Q(·), H(·) The quantile function and the Heaviside
step function.

L(·) The pinball loss function.
EM(·), RK(·) The model evaluation function and ranking

funtion.

I. INTRODUCTION

ACCURATE short-term load forecasting (STLF), includ-
ing both deterministic load forecasting (DLF) and prob-

abilistic load forecasting (PLF), plays an important role in
reliable and economical power system operations. Typically,
DLF can be used in the design of demand response programs,
unit commitment, economic dispatch, energy trading, and oth-
ers [1]. In contrast, PLF provides more valuable uncertainty
information than DLF in the circumstance of increasing mar-
ket competition, aging infrastructure, renewable penetration,
and the more active and less predictive electricity market [2].
To better manage the future uncertainty in power systems,
PLF has been extensively applied in stochastic unit commit-
ment, probabilistic power flow, and probabilistic transmission
planning [3].

The STLF literature mainly focused on DLF in the past
decades, which led to a wealth of DLF techniques. DLF
methods can be classified into different categories based on
forecasting lead time, spatial scales, and method principles.
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According to the forecasting method principle, DLF methods
can be roughly categorized into statistical methods, machine
learning (ML) methods, and deep learning methods. Statistical
methods, such as the autoregressive integrated moving average
method, are the first generation of DLF, usually built based on
only the historical time series [4]. The most popular used DLF
methods are ML-based models, e.g., artificial neural network
(ANN) and support vector machine (SVR), which are able
to integrate external information such as meteorological data.
Deep learning methods have been recently applied to STLF,
which have shown promising learning abilities [5]. A more
comprehensive review of DLF methods can be found in recent
review papers [6], [7]. However, one common drawback of
most existing data-driven methods is that their parameters are
optimized by minimizing the overall accuracy objective func-
tion without considering the local performance. For example,
Jiang et al. [8] optimized SVR models for STLF based on a
risk function of all observations with a two-step hybrid param-
eter searching algorithm. The loss function used to update
ANN (including both shallow ANN and deep NN) is usually
in terms of mean error, which is calculated based on a batch
of samples [5].

PLF has commanded attention only since the most recent
decade. According to the source of uncertainties, PLF meth-
ods can be roughly categorized into one-step and two-step
methods. Specifically, the one-step PLF captures the future
uncertainty in the step of generating PLFs by quantile regres-
sion (QR) and its variants, such as Gaussian process QR [9]
and QRNN [2], [10], or quantile estimation, such as the lower
upper bound estimation [11]. On the contrary, the uncer-
tainty of two-step PLF could originate from the diverse input
scenarios [12], various input combinations [13], or differ-
ent point forecasters [14]. A comprehensive review of PLF
methods can be found in [15]. Similar to DLF, most of
the PLF models are optimized based on the global forecast-
ing performance, without considering the local behavior. For
example, Quan et al. [11] optimized a NN to generate lower
and upper bounds with the overall best coverage width-based
objective function. Wang et al. [14] determined the optimal
weights of single QR methods based on pinball loss (PL) sum-
mation. Moreover, QR based PLF methods are in form of
least absolute deviations regression, which minimizes a sum
of asymmetrically weighted absolute residuals [16].

In addition to the forecasting methods, a variety of
methodologies,1 such as feature selection [17], ensemble
forecasting [18], aggregate forecasting [19], and time series
decomposition [20], have been developed to further enhance
the STLF accuracy, which leads to an even larger collection of
options for STLF. Therefore, appropriate and effective model
selection for STLF becomes increasingly important, especially
with the consensus that a universally best model does not
exist [15]. In our previous work, we developed a Q-learning
based dynamic model selection (DMS), which significantly
improved the DLF accuracy by choosing the best forecasting

1Four terms are repeatedly used in this paper, which are methodology,
algorithm, method, and model. A methodology refers to a general solu-
tion framework that can be implemented with different models [15]. Several
models can be built based on one method or algorithm.

model at each forecasting time step [21]. This reinforcement
learning based DMS work inspires similar research, such as
DMS for ensemble learning [22]. Nevertheless, the current
STLF model selection is far from maturity, due to: (i) the
lack of relevant literature (less than 5 papers returned from a
quoted Google Scholar search-“load forecasting model selec-
tion”), especially for PLF; (ii) the confusion of model selec-
tion with feature selection and hyperparameter optimization,
such as in [22], [23], which restricts the scope of available
selectable candidates; and (iii) the neglect of heterogeneity
between macroscopic superiority and local performance, such
as in [17].

With the aim of coping with the two deficiencies in current
STLF research, i.e., the over-reliance on global accuracy in
STLF and a lack of effective model selection methodology
with local awareness, we develop a reinforcement learning
based dynamic model selection (QMS) methodology in this
paper. The developed QMS relies on the Q-learning agents
that are able to select the best future DLF/PLF models at every
single forecasting step from a deterministic forecasting model
pool (DMP)/probabilistic forecasting model pool (DMP). The
main contributions of this paper include: (i) introducing the
locally optimized probabilistic forecasting method into PLF
domain; (ii) proposing a QMS methodology, which learns
from the latest model performance and selects the best future
models at each forecasting time step; and (iii) improving the
STLF by over 50% with the developed STLF-QMS method,
compared to state-of-the-art benchmarks.

The remainder of this paper is organized as follows. The
STLF-QMS methodology is described in Section II. Section III
briefly summarizes the data source and experiment setups.
Numerical simulation results are presented and discussed in
Section IV. Section V discusses the flexibility and scalability
of the method. Section VI summarizes the conclusions.

II. STLF-QMS METHODOLOGY

This section describes the details of the developed STLF,
including both DLF and PLF, with Q-learning based dynamic
Model Selection (STLF-QMS). The overall framework of
STLF-QMS is illustrated in Fig. 1, which consists of three
interactive major modules: (i) the deterministic forecasting
model pool (DMP), (ii) the probabilistic forecasting model
pool (PMP), and (iii) the QMS. The three major modules,
along with the detailed description of the STLF-QMS, are
orderly described in this section.

A. Short-Term Deterministic Forecasting Model Pool (DMP)

A collection of ML-based short-term deterministic forecast-
ing models constitute the DMP, from which the best model
is selected at each time step in the forecasting stage. The
DMP consists of ten models with four state-of-the-art ML
algorithms [24], i.e., ANN [25], SVR [8], gradient boosting
machine (GBM) [26], and random forest (RF) [27], which are
further diversified by different training algorithms, kernel func-
tions, or distribution functions. Specifically, three ANN models
with standard back-propagation (BP), momentum-enhanced
BP, and resilient BP training algorithms are selected based on
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Fig. 1. Framework of the developed STLF with Q-learning based dynamic
Model Selection (STLF-QMS).

TABLE I
ML BASED MODELS IN THE DMP

their fast convergence and satisfactory performance [28]. The
most popular kernels in SVR are used, which are linear, poly-
nomial, and radial base function kernels. GBM models with
squared, Laplace, and T-distribution loss functions are empir-
ically selected. The last model is an RF model. The details
of the models are summarized in Table I. The triplets of DLF
models, algorithms, and forecasts in the DMP are denoted as
{Di, �i, ŶDi }, where i = 1, 2, . . . , Nd, and Nd = 10 is the
number of models in the DMP. These models are trained based
on a DLF training dataset, Xd, and hyperparameters are tuned
using a validation dataset, Xv, as shown in the bottom-left
box in Fig. 1. The detailed mathematical descriptions of the
four ML algorithms could be found in [29]. The DLF models
are selected based on their good performance and popularity.
Please note that in this study, we are not trying to identify the
existing best-performing DLF models in the literature, since
(i) no single algorithm can always be the best in all scenarios,
(ii) it’s challenging to implement all the methodologies behind
the models, such as feature selection, parameter optimization,
transfer learning, etc., (iii) the best model also has a risk to
generate large local errors. Therefore, we focus on reinforcing
the performance of the most widely-used, easily-implemented,
and standard machine learing models.

B. Short-Term Probabilistic Forecasting Model Pool (PMP)

The PMP contains a total of four two-step parametric PLF
models, which take a DLF (ŷt) as input and output its cumula-
tive distribution function (CDF) at every time step [30]. Four
distributions, parameterized by means (μ) and standard devi-
ations (σ ), are selected due to their ability of quantifying
uncertainty in time series forecasting, which are normal,

Fig. 2. Flowchart of the training and forecasting procedure of a PLF model.
AL: actual load.

Gamma, Laplace, and noncentral-t distributions. The DLF
uncertainty is captured by minimizing PL of the CDF-derived
quantiles at each forecasting step. The procedure of PLF train-
ing and forecasting is illustrated in Fig. 2 and described as
follows:
• Step 1: Parameterizing uncertainty of the DLF, ŷ, in terms

of μ and σ , where μ is assumed to be a DLF. Then, the
quantile, q, and its corresponding pinball loss, Lq, are
derived and expressed by q and σ :

FDi,Pj,t
(
ŷt|μt, σt

) = FDi,Pj,t
(
μDi,Pj,t, σDi,Pj,t

)

= FDi,Pj,t
(
ŷDi,t, σDi,Pj,t

)

= FDi,Pj,t
(
σDi,Pj,t

)
(1)

QDi,Pj,t(p) = F−1
Di,Pj,t

(p) = F−1
Di,Pj,t

(
p, σDi,Pj,t

)

(2)

LDi,Pj,q,t
(
q, σDi,Pj,t

) = −q
{
QDi,Pj,t(q)− yt

}

− H
(
yt − QDi,Pj,t(q)

)
(3)

where Di, Pj indicate the DLF and PLF models, respec-
tively, i = 1, . . . , Nd and j = 1, . . . , Np (Np = 4); t is a
time index; F(·) and F−1(·) are a CDF function and its
corresponding inverse function; Q(·) is the quantile func-
tion; p and q are probability and a quantile, respectively;
H(·) is the Heaviside step function.

• Step 2: Optimizing the DLF uncertainty indicator, σ (the
only unknown parameter), at each forecasting time step
by minimizing the average pinball loss of all quantiles
with the genetic algorithm (GA) [31]:

σ ∗Di,Pj,t = arg min
σDi,Pj,t

1

Nq

Nq∑

q=1

LDi,Pj,q,t
(
q, σDi,Pj,t

)

s.t. ζ1 < σDi,Pj,q,t < ζ2 (4)

where σ ∗ is the optimized standard deviation; Nq = 99
is the number of quantiles; ζ1 and ζ2 are the lower and
upper bounds of σ , which are 0.01 and 100, respectively.

• Step 3: An SVR surrogate model is constructed to fit the
observation and σ ∗ set {Xts,t, σ

∗
t }Nts

t=1 in the training stage,
which is used to generate unknown pseudo standard devi-
ations, σ̂ ∗, in the forecasting stage. Nts is the training data
length of SVR. Xts,t = (σ ∗t−Nl

, . . . , σ ∗t−1, ŷt−Nl , . . . , ŷt) is
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input to the SVR surrogate model, where Nl is the lag-
ging length. To fit an SVR model, a radial basis function
is applied to transform the (2Nl + 1)-dimensional input
data into a higher-dimensional linearly-separable feature
space [32]:

K
(
X′ts,t, Xts,t

) = exp

(
− 1

2δ2

∥∥X′ts,t − Xts,t
∥∥2

)
(5)

where δ is a free parameter. Then, a linear regression is
applied, given by:

�Pj

(
X′ts,t

) = 〈
ωT , K

(
X′ts,t, Xts,t

)〉+ b (6)

where �Pj is the SVR surrogate model corresponding
to jth predictive distribution. ω and b are obtained by
minimizing the following objective function [32]:

{ω, b} = arg min
1

2
ωTω + C

∑Nts

t=1

(
ξt + ξ∗t

)

s.t. ξt, ξ
∗
t ≥ 0

σ ∗t −
(〈
ωT , K

(
X′ts,t, Xts,t

)〉+ b
) ≤ ε + ξt

(〈
ωT , K

(
X′ts,t, Xts,t

)〉+ b
)− σ ∗t ≥ ε + ξ∗t

(7)

where ξt and ξ∗t are slack variables; ε is the insenitive
parameter and C is the penalty weight.

• Step 4: In this last step (forecasting stage), a DLF,
ŷDi,t, is first generated by a DLF model. Then, ŷDi,t,
along with other observations, are fed into the SVR
surrogate model to get the pseudo standard deviation,
σ̂ ∗Di,Pj,t

= �Di,Pj(Xts,t). At last, the CDF and quantiles
of the DLF at that time are derived by Eqs. (1) and (2),
respectively, which are visualized as predictive intervals
(PIs) in Fig. 2.

C. Q-Learning Based Dynamic Model Selection (QMS)

Once DLFs and PLFs are generated by models in the DMP
and PMP, the best DLF and PLF models are selected respec-
tively by two reinforcement learning agents at each forecasting
time step. Reinforcement learning is a typical ML algorithm
that models an agent interacting with its environment. In this
paper, Q-learning, a model-free adaptive dynamic program-
ming algorithm, is adopted to learn the optimal policy of
finding the best DLF and PLF models at every forecasting
time step.

In order to train a Q-learning agent, a mathematical frame-
work of QMS is first defined in a Markov Decision Process
(MDP). In general, a Q-learning agent takes sequential actions
at a series of states based on a state-action value matrix,
Q-table, until reaching an ultimate goal [33]. The actions are
evaluated by a scalar reward feedback returned from the envi-
ronment, which is used to update the Q-table. In this research,
the state space, S, is composed of the possible forecasting
models (DLF or PLF) at the current time:

S = {s} = {
s1, s2, . . . , sNs

}
(8)

where si means the current forecasting model is Di (or Pi

if it is used in QMS for PLF, denoted as PLF-QMS); Ns is
the number of states, which equals the number of selectable

Fig. 3. The Q-learning learning curves (in terms of reward curves) of two
reward strategies in Eqs. (10a) and (10b). Q-learning for PLF model selection
converges slower than that for DLF model selection, since the PLF model
ranking is based on pinball loss, which is more complex than the DLF model
ranking criterion, i.e., absolute percentage error.

models, Nd or Np. Similarly, the action space, A, is com-
posed of the selectable forecasting models for the next time
step:

A = {a} = {
a1, a2, . . . , aNa

}
(9)

where aj means taking the action of switching from the current
forecasting model to Dj (or Pj if it is used in PLF-QMS) at the
next forecasting time step; Na is the number of action options,
which is identical to Ns in this paper.

To successfully solve an MDP using Q-learning, the most
important step is to maintain a reward matrix, R, by a proper
reward function, R(s, a). Two reward strategies are consid-
ered in this paper, which are based on (i) the improvement of
next-state forecast over the current-state forecast, and (ii) the
performance ranking improvement of the next-state model over
the current-state model (the ranking of the best model is 1).
The corresponding reward functions of the two strategies are:

Rt
(
si, aj

) = EM
(
Di,t

)− EM
(
Dj,t+1

)
(10a)

Rt
(
si, aj

) = RK
(
Di,t

)− RK
(
Dj,t+1

)
(10b)

where Di,t can be replaced by Pi,t in PLF-QMS. Two eval-
uation metrics, absolute percentage error and average pinball
loss, are respectively adopted according to the QMS objective
(for DLF or PLF):

EM(·) =

⎧
⎪⎪⎨

⎪⎪⎩

EMb
(
Di,t

) =
∣∣ŷi,t − yi

∣∣

yi
(11a)

EMpl
(
Pi,t

) = 1

Nq

∑Nq

q=1
LPi,q,t(·) (11b)

The convergence test of the Q-learning with two reward
strategies is performed and the learning curves are shown in
Fig. 3. It’s observed that Q-learning with the reward function
in Eq. (10a) fails to converge, which is shown as red lines.
This is because the magnitude of forecasting evaluation met-
rics does not only depend on forecasting models but is also
changing with time. Taking the action of switching from a
worse model to the best model might still receive a nega-
tive reward (due to the deterioration of forecasting evaluation
metrics). In contrast, Q-learning with the reward function in
Eq. (10b), shown as the blue lines in Fig. 3, converges suc-
cessfully, since the model ranking improvement is only related
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Algorithm 1 Q-Learning Based Dynamic Model Selection
(QMS)
Require:

Number of steps, Nsp, in a QMS procedure
Model pool dimension Nm, which is either Nd or Np

Q-learning training dataset Ttd or Ttp ∈ R
Nq×Nm

QMS process dataset Tcd or Tcp ∈ R
Nsp×Nm

Learning rate α, discount factor γ , number of episodes Ne

Ensure: Select the best model from Nm models at each step
in Tcd or Tcp

1: Initialize Q = −→
0 Nm×Nm , ε = 1

2: for e = 1 to Ne do
3: With the probability of ε select a random action ae,

otherwise select ae = arg max
a∈A

Qe(se, a)

4: Calculate R by Eq. 10b
5: Update Q by

Qe+1(se, ae) = (1− α)Qe(se, ae)+
α[Re(se, ae)+ γ max

a∈A
Qe(se+1, a)] (12)

6: ε ← ε − 1
Ne

7: end for
8: for sp = 1 to Nsp do
9: Take action a∗sp = arg max

a∈A
Q∗(ssp, a)

10: end for

to the model, which avoids the time series effects [19] of the
load. Therefore, in this paper, we design reward function as
the model performance ranking improvement, which ensures
the effective and efficient convergence of Q-learning.

With state, action, and reward defined, the QMS is realized
by training Q-learning agents using the Q-learning train-
ing datasets Ttd/Ttp, which are applied to the QMS process
datasets Tcd/Tcp, as detailed in Algorithm 1 and illustrated
in the bottom middle box of Fig. 1. The critical component
of determining (steps 1-7 in Algorithm 1) and applying (steps
8-11 in Algorithm 1) the QMS policy is the Q-table, Q, which
contains triplets of s, a, and Q(s, a). As shown in Algorithm 1,
Q values are initialized to be zero and updated repeatedly by
Eq. (12) based on the action reward in the current state and
the maximum reward in the next state, where α is the learning
rate that controls the aggressiveness of learning, γ is a discount
factor that weights the future reward. The balance of exploita-
tion and exploration in Q-learning is maintained by adopting a
decaying εt-greedy method [34]. The Q-learning agent with the
decaying εt-greedy method takes completely random actions
at the beginning, while reducing the randomness with a decay-
ing ε during the learning process. The Q-learning algorithm
will eventually converge to the optimal policy, Q∗, after Ne

iterations, which is applied to find the optimal actions, a∗, in
the QMS process.

D. The STLF With QMS

The developed STLF-QMS method has two steps, i.e., DLF-
QMS and PLF-QMS, which is denoted as MQ2 = DQ + PQ.
As shown in Fig. 1, the dataset is divided into four parts:

(i) DLF training data, Xd, which is used to train Nd DLF
models; (ii) PLF training data, Xp, which is used to train Np

PLF models; (iii) validation data, Xv, which is used to tune
DLF hyperparameters, PLF (ζ1, ζ2, δ, ε, and C) and Q-learning
(α, γ , Nq, and Nsp) parameters; and (iv) testing data, XE,
which is used to validate the effectiveness of the developed
DLF and PLF with QMS. In addition, a sliding window with
a length of (Nq + Nsp) is used to select and partition data for
QMS. Specifically, data segments of episodes are generated
from the first Nq samples and used to train two Q-learning
agents (one for DLF model selection and one for PLF model
selection). Then, the optimal policy is adopted to make model
selection decisions for the next Nsp steps. The stride of the
sliding window is identical to the length. Note that the features
of input to different models are different.

The workflow of the developed STLF-QMS model is illus-
trated in Fig. 1. In the training stage, DLF models are first
trained with Xd, thereafter providing DLFs, ŶD. Then, QMS is
dynamically trained and applied to select the best DLF model
at every single step. The selected best DLF models generate
DLFs, Ŷ∗D, which are also the input to PLF candidate mod-
els for training. Multiple PLF models are trained and serve as
the input to PLF-QMS, which is the last step in the training
stage. In the testing (actual forecasting) stage, DLF and PLF
models are adaptively selected by two Q-learning agents at
every forecasting step, which generate final reinforced DLF
and PLF, Ŷ∗D and Ŷ∗P, respectively.

III. EXPERIMENT SETUP

A. Data Description

In this paper, hourly load data of the University of Texas
at Dallas (UTD)2 is used for 1-hour-ahead (1HA) STLF [35].
The reasons to research 1HA STLF with university campus
load are twofold: (i) 1HA STLF is used in various power
system operations, which is also scalable to longer-term STLF;
(ii) demand-side STLF is more challenging than upper-level
STLF in power systems [36], and (iii) large electricity con-
sumers, such as universities, are more critical in demand-side
management. In addition to campus load, hourly weather
information is retrieved from the National Solar Radiation
Database (NSRDB).3 The weather features in NSRDB dataset
include air temperature, relative humidity, air pressure, wind
speed, wind direction, direct normal irradiance, global hori-
zontal irradiance, and diffuse horizontal irradiance. Calendar
features, i.e., hour of the day, day of the week, and month of
the year, are also extracted and included in the case studies
to capture the calendar patterns [19]. The data from January
12th 2015 to December 31st 2015 is used for testing.

Both load and weather data spans from January 1st 2014
to December 31st 2015. The data ranging from January 1st

2014 to November 30th 2014 is used to train DLF models,
while the data from December 1st 2014 to December 15th 2014
is used to train PLF models. The data from December 16th

2014 to January 8th 2015 is used to tune forecasting model

2https://doi.org/10.21227/jdw5-z996
3https://nsrdb.nrel.gov
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TABLE II
DLF MODEL HYPERPARAMETERS

hyperparameters, SVR surrogate model parameters, and the
Q-learning parameters.

B. Parameters & Hyperparameters

Specifically, SVR surrogate parameters are δ = 0.001, ε =
0.001 and C = 1; the Q-learning parameters are α = 0.1
and γ = 0.8, which ensures the learning speed (thus, Ne =
100) and also respects the future reward. The moving window
parameters in Q-learning are set as: Nsp = 4, Nq = 72. The
DLF model hyperparameters are empirically determined based
on the validation dataset and are listed in Table II, including
the learning rate (lr) and the maximum number of epochs
(max_epoch) in D1–D3; the momentum (momentum) in D2,
the minimum update value (min_delta), and the maximum
update value (max_delta) in D3; the penalty weight (Cd) and
insentive parameter (εd) in D4–D6; the free parameter (δd) in
D5 and D6; the degree of the polynomial (degree) in D5;
the number of boosting iterations (ntrees), maximum tree
depth (max_depth), learning rate (lr), out-of-bag fraction
(bag_frac) in D7–D9; the degree of freedom (DF) in D9;
and the number of trees (ntrees) and the number of variables
randomly sampled as candidates at each split (mtry) in D10.

C. Comparisons & Implementation

The developed MQ2 model generates both DLFs and PLFs,
therefore, is compared to DLF and PLF benchmarks. To
validate the effectiveness of the MQ2 model, two sets of com-
petitive models are selected: (i) candidate models described
in Sections II-A and II-B, and (ii) the widely-used ensem-
ble learning models that leverages multiple candiate models.
Specifically, the DQ method is compared to Di(i = 1, . . . , Nd)

and the Machine Learning-based Multi-Model forecasting
framework (M3) models [29] with linear regression and the
three best ensemble algorithms in the second layer (denoted
as B1–B4). Moreover, MQ2 is compared to Mi,j, where i =
{Q, 1, 2, . . . , Nd} and j = {Q, 1, 2, . . . , Np}, but i, j can not
equal Q at the same time (denoted as M−Q2 ). QR and QR
averaging (QRA) models are adopted to compare with the MQ2

PLF model. Please note the training data for Di and ensemble
models is 3:1 in ensemble benchmarks.

The case studies are conducted on a laptop with an Intel
Core i7-4870HQ CPU running at 2.6 GHz and with 16.0 GB
RAM. The DLF models, PLF models, and GA optimization

are implemented with caret, rmutil, quantreg, e1071,
and GA packages, in R version 3.5.1.

D. Evaluation Criteria

The DLF models are evaluated by three popular used fore-
casting errors, i.e., normalized mean absolute error (nMAE),
mean absolute percentage error (MAPE), and normalized root
mean square error (nRMSE) [29]. To assess the PLF effective-
ness, reliability, sharpness, and comprehensive performance
of PLF PI and quantiles are evaluated. The reliability and
sharpness of PLF are respectively quantified by PI coverage
probability (PICP) and interval score (IS) of every PI, while
the comprehensive judgement that considers both reliability
and sharpness is made by the normalized average of all the
quantiles’ pinball loss (nPL) [14]. The smaller nPL and IS
indicate a better PLF model, while PICP should be close to
its corresponding PI nominal confidence (PINC) [37].

In addition to performance evaluation metrics, the improve-
ment of the developed method over the benchmarks is also
of importance. The improvement based on one of the above
metrics is expressed as:

Impk

(
MQ2

Mi,j

)
= EVk

(
Mi,j

)− EVk
(
MQ2

)

EVk
(
Mi,j

) × 100% (13)

where EV(·) is an evaluation function; k ∈ {a, p, r, l}, which
means the improvement is calculated based on nMAE, MAPE,
nRMSE, and nPL, respectively.

IV. RESULTS

A. DLF Performance

1) Q-Learning Convergence: The effectiveness of the DLF-
QMS is evaluated using the testing dataset with 354 days in
2015. Based on the sliding window parameters, a Q-learning
agent is trained every four time steps to make DMS. Therefore,
there are totally 2,124 Q-learning agents built to select proper
DLF models for the 8,496 time steps in 2015. Figure 4 shows
the statistics of Q-learning agent learning curves, which indi-
cates the fast and successful convergence of Q-learning agents.
Specifically, Q-learning agents learn extremely fast from inter-
actions with the environment in the first 40 episodes. After
the first 40 episodes, even though the exploration probability
is still high (ε = 0.6 when e = 40), Q-learning agents learn
slowly and tend to converge. Thus, Q-learning agents converge
effectively and efficiently in the DLF-QMS.

2) DLF-QMS Effectiveness: To verify the effectiveness of
the DLF-QMS, the rankings of each model at every time step
of one year are counted and statistically shown as a violin
plot in Fig. 5. It is observed from the figure that forecast-
ing models perform distinctively at different time steps, where
every model could become the best or the worst at a certain
time step. Each model also shows unique characteristics. For
example, the three ANN models (D1, D2, D3) rank 8th, 9th,
10th (the worst three) and 1st, 2nd (the best two) more times
than other rankings. An SVR model (D6) almost has the same
chance for each ranking. It’s important to note that no single
model (D1-D10) dominates others in the DLF. The effective-
ness of the DLF-QMS is evident by comparing the violin of
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Fig. 4. Learning curve statistics of 2,124 Q-learning agents for DLF-QMS.
The reward of each episode is the summation of Q-values in Q-table. Lines in
the boxes are the medians. The interquartile range box represents the middle
50% of the rewards. The upper and lower bounds are maximum and minimum
values of the rewards, respectively.

Fig. 5. Violin plot of DLF model rankings. The changing width of a violin
indicates the distribution of rankings of a forecasting model, while the boxplot
inside a violin shows similar statistical information as Fig. 4.

Fig. 6. Forecasting and actual load (AL) time series of one day; values
above forecasting points are rankings of the selected models; symbols below
forecasting points are names of the selected models; the annotation font color
and the line color of the same model are identical.

DQ with violins of other models. It is found that Q-learning
agents select top 3 models at each forecasting step with a 75%
chance and they tend to select a better model, since DQ model
has an upward violin.

Figure 6 shows the actual and forecasting time series of one
day. Specifically, the thin lines represent 10 DLF models in
the DMP, the thick blue line represents the developed DQ in
MQ2 , and the thick black line represents the actual load (AL)
time series. In general, most selected models rank 1st except
for the models at 0am and 6am. However, the Q-learning agent
intends to select the 4th model at 0am since it will receive a
large reward (R(s4, a5) = 3) by switching from D4 (ranking
4th) at 0am to D5 (ranking 1st) at 1am. It is also logic for
the Q-learning agent to select D9 at 6am because it values the
future reward of this selection.

3) Overall DLF Accuracy: The overall performance of the
developed MQ2 method (also denoted as DQ) and its bench-
marks are evaluated and compared with 6 metrics, which are
listed in Table III. It is first found that different ML models

TABLE III
FORECASTING ERRORS [%] AND IMPROVEMENTS [%] OF THE

DEVELOPED DQ AND BENCHMARK MODELS

and models with the same ML algorithm but different training
or kernel functions have distinctive overall performance. For
example, ensemble ML models (i.e., D7-D10) are generally
better than ANN and SVR models (i.e., D1-D6), while SVR
with RBF kernel produces more accurate DLFs than those
with linear and polynomial kernels. Ensemble learning mod-
els reduce the risk of unsatisfactory models but cannot beat
the best candidate model. Most importantly, Impa, Impp, and
Impr indicate the improvement of the developed MQ2 method
over benchmarks, from which significant enhancements are
observed. The average DLF improvements are more than 50%,
which confirm that the local performance awareness of the
DLF-QMS is effective.

B. PLF Performance

1) Q-Learning Convergence & PLF-QMS Effectiveness:
Similar to DLF, effectiveness of the developed MQ2 PLF
method is first confirmed by verifying Q-learning convergence
and QMS success. Figure 7 shows that the convergence pat-
tern of Q-learning agents for PLF-QMS is similar to that of
Q-learning agents for DLF-QMS. This is due to the stable
rewarding strategy we designed in Eqs. (10b)-(11a). The suc-
cessful convergence also leads Q-learning agents effectively
perform the PLF-QMS, which are illustrated by violin plots
in Fig. 8. The enhancement of PLF-QMS is validated by
Mi,Q (i.e., Di+ PQ) ranking improvements over benchmarks
(Mi,−Q).4 It’s found that Mi,Q has more 1st rankings than
others.

2) Overall PLF Accuracy: The normalized average pinball
losses (nPLs) of the developed MQ2 model and benchmarks
M−Q2 are summarized in Table IV, based on which the
improvements of the MQ2 model over M−Q2 models are shown
in Fig. 9a. The developed MQ2 model generates better PLF

4The subscript −Q means all models, excluding the model with QMS. For
example, Mi,−Q is a PLF model set with any model in the fist-step and any
model but the PLF-QMS model in the second-step.
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Fig. 7. Learning curve statistics of 2,124 Q-learning agents for PLF-QMS.
The boxes have the same meaning as those in Fig. 4.

Fig. 8. Violin plot of forecasting model rankings. The facet title of each
subplot is the DLF model used in the two-step PLF, while the abscissa axis
indicates the PLF model used in the two-step PLF.

(nPL = 1.03%) than any of the competing models, since
the Impl values are positive and the average Impl is 54.21%.
Specifically, the average Impl of the MQ2 model over Mi,−Q

models and Mi,Q models are 58.92% and 8.92%, respectively.
The difference of the improvement magnitude is because of
the significant impact of the first-step DLF model performance
on the second-step PLF model in the two-step PLF, which is
shown in Fig. 9b. Figure 10 shows the quantiles’ PICP and
IS of the Mi,Q and MQ,j models, from which we found the
superior reliability and satisfactory sharpness of the developed
MQ2 model. To this end, it is concluded that QMS effectively
and immensely enhances both the DLF and PLF accuracy.

3) PLF Time Series: PLF provides future uncertainty in
terms of quantile intervals, which are valuable to power system
operators for decision-makings. Five models, i.e., baseline
model, best M−Q,−Q, Mi,Q, MQ,j models, and the developed
MQ2 model, are selected to detail the PLF quantile time series,
which are QR, M10,4, M10,Q, MQ,3, and MQ2 . Figure 11 visu-
alizes the AL, DLF, and PLF time series, from which the
one-step QR is the worst due to its inaccurate DLFs and
redundant PLF uncertainty. Compared to M10,4 and M10,Q, the

TABLE IV
NORMALIZED AVERAGE PINBALL LOSS (NPL) [%] OF THE DEVELOPED

MQ2 MODEL AND BENCHMARKS M−Q2

Fig. 9. PLF performance analysis.

Fig. 10. PICP and IS of quantiles. The black diagonal line is the PINC
curve [37].

first-step DQ of MQ,3 and MQ2 reduces the deviations between
DLFs and AL. Moreover, it’s observed that the second-step PQ

adjusts the uncertain magnitude based on DLF bias. For exam-
ple, M10,Q decreases interval widths when DLF is accurate
(e.g., time step 1-12 and 25-36) compared to M10,4, which has
the same DLF model but without PLF-QMS. On the contrary,
M10,Q adds more uncertainty to compensate the DLF devia-
tions from time step 38 to 48, compared to MQ,3. Therefore,
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Fig. 11. AL, DLF, and PLF time series of 5 selected methods.

it’s concluded that MQ2 provides the best PLF because it uti-
lizes enhanced DLF and dynamically adjusts future uncertainty
based on DLF bias.

V. DISCUSSION

The developed reinforcement learning enhanced forecast-
ing model has been verified to be effective for 1HA STLF.
However, the method is sufficiently general, flexible, and
scalable to be applied to different forecasting tasks.

A. Forecasting Target

Formed in similar regression problems, the same forecasting
method is usually applicable to different forecasting targets,
e.g., load, wind, and solar. For example, NN was used for
both load and wind forecasting in [38]. Sáez et al. [39] gener-
ated load, wind, and solar forecasts for a microgrid with fuzzy
prediction interval models. The developed reinforcement learn-
ing enhanced forecasting model is flexible with the forecasting
target, since (i) the forecasting models in model pools have
been used in wind [40], [41] and solar forecasting [42]–[44],
and (ii) the QMS does not rely on the optimal overall accu-
racy but the local diverse performance of forecasting models,
which is satisfied in the forecasting with different targets.

B. Time Horizon

Forecasts with different time horizons are valuable to var-
ious time-scale power system operations and markets. This
paper focuses on the 1HA forecasting due to its flexibility
and scalability. There are three ways to extend the short-term
forecasting into longer-term forecasting, namely, the recur-
sive approach, the parallel approach, and the combination of
the two approaches [45]–[47]. Although different approaches
show superiorities under different circumstances, the parallel
approach is more popular in multi-step ahead load forecast-
ing, as shown in [48], [49]. Relying on the DLF and PLF
models, the developed method can be applied to longer-term
forecasting by all the three approaches.

C. Spatial Scale

The customer-level load data was used for case studies,
which is more challenging than the higher-level forecasting

TABLE V
COMPUTATIONAL COSTS OF THE DEVELOPED METHOD

in the power system hierarchy [50]. Therefore, it is expected
that the developed method will perform better for higher-level
load forecasting (e.g., transformers, feeders, substations, etc).
To validate this point and add more credibility to the paper,
the proposed method has applied to the data of GEFCom2014
load forecasting task 1. The nMAE, MAPE, and nRMSE of
the developed DQ are 1.88%, 3.82%, and 2.42%, while corre-
sponding forecasting errors of the best DLF benchmark are
3.09%, 6.26%, and 5.38%, respectively. For the PLF, nPL
of the developed MQ2 is 0.68%, while nPL of the best PLF
benchmark withouth Q-learning is 1.19%.

One challenge for large spatial-scale distribution-level or
customer-level load forecasting is the computational cost.
Table V summarizes the computational time of the six
processes in the case studies. The forecasting models took
51.76 min to train, which are usually updated less-frequently
in real applications. Two Q agents were trained every four
steps, which took averagely 0.22 min. It took around 4.69 ms
to generate a DLF and a PLF with the developed method. In
general, the proposed method is extendable to the system-level
data with fine spatial granularity and large coverage, especially
with the development of distributed computing frameworks,
such as Apache Hadoop and Spark.

VI. CONCLUSION

This paper developed a reinforcement learning enhanced
two-step short-term load forecasting (STLF) model, which
provides both deterministic and probabilistic load forecasts
(DLFs and PLFs). Ten state-of-the-art machine learning DLF
models constituted a deterministic forecasting model pool
(DMP) and four genetic algorithm optimized predictive distri-
bution surrogate models composed a probabilistic forecasting
model pool (PMP). At each time step, a Q-learning agent
selected the best DLF model from the DMP to provide DLF in
the first-step, which was input to the best PLF model selected
from the PMP by another Q-learning agent to perform PLF in
the second-step. Numerical simulations on two-year weather
and smart meter data showed that:
(1) Both Q-learning in DLF and PLF model selections (DLF-

QMS and PLF-QMS) effectively selected the optimal
DLF and PLF models at each forecasting step;

(2) The QMS enhanced LF by improving DLF accuracy and
dynamically adjusting PLF uncertainty;

(3) The developed STLF-QMS model reduced DLF errors by
over 50% and improved PLF accuracy by nearly 60%.

Future work will focus on comparing model selection
capabilities of different reinforcement learning, such as State-
Action-Reward-State-Action and deep Q-learning.
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