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Deep Learning-based Real-time Building
Occupancy Detection Using AMI Data
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Abstract—Building occupancy patterns facilitate successful
development of the smart grid by enhancing building-to-grid
integration efficiencies. Current occupancy detection is limited by
the lack of widely deployed non-intrusive sensors and the insuf-
ficient learning power of shallow machine learning algorithms.
This paper seeks to detect real-time building occupancy from
Advanced Metering Infrastructure (AMI) data based on a deep
learning architecture. The developed deep learning model consists
of a convolutional neural network (CNN) and a long short-term
memory (LSTM) network. Specifically, a CNN with convolutional
and max-pooling layers extracts spatial features in the AMI data.
Then, the forward and backward dependencies within the CNN
feature maps are learned by a bidirectional LSTM (BiLSTM)
structure with three hidden layers. Case studies based on a pub-
licly available dataset show that the developed CNN-BiLSTM
model consistently and robustly outperforms the state-of-the-art
machine learning classifiers and other advanced deep learning
architectures with around 90% occupancy detection accuracy
and high detection confidence.

Index Terms—Deep learning, convolutional neural network,
long short-term memory, smart meter, building occupancy
detection.

I. INTRODUCTION

THE BUILDING sector accounts for over 70% of the total
electricity consumption in the U.S., making the build-

ing integration a critical part of the smart grid. Widespread
research has been done to enhance communications between
buildings and the grid, such as demand-side load monitor-
ing [1] and forecasting [2], [3], customer socio-economic
characterization [4], and demand response program design [5].
Smart buildings with occupancy-driven demand response are
found to achieve significant energy savings, compared to con-
ventional demand response programs that have no information
about occupancy [6]–[8]. The occupancy information is ben-
eficial to the demand response in several aspects, such as:
(i) helping determine peak demand periods at the household
level, (ii) identifying the potential of each house to participate
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and their possible participating time, and (iii) remotely and
automatically actuating loads through advanced control strate-
gies in smart buildings. For example, occupancy information
was used to understand the consumers’ attributes for tailored
marketing actions in demand response management [9]. The
importance of occupancy information to demand response was
also emphasized in [10] by constructing residential occupancy
curves of 15 European countries. Moreover, Brooks et al. [6]
developed a real-time occupancy-based feedback control
algorithm for variable air volume heating, ventilation, and air-
conditioning (HVAC) systems, which saved 29%–80% energy
savings for commercial buildings. Real-time occupancy was
obtained through video-processing techniques for HVAC unit
predictive control in [7]. In addition, a novel control mechanism
was developed for joint demand response management and ther-
mal comfort optimizaion, where the demand response control
strategy was dependent on the occupancy information [8]. A
more detailed of occupancy detection benefits to the demand
response management can be found in [11].

Occupancy detection can be conducted through the use
of various sensors, which can be roughly categorized into
intrusive or non-intrusive groups based on the monitored
objects. Intrusive sensors measure indoor environments, such
as motional, acoustic, or climatic parameters [12]. For exam-
ple, occupancy detection models with different indoor climate
feature combinations were compared in [13] and gener-
ated the best results with over 99% accuracies. Moreover,
Zou et al. [14] developed an occupancy detection method
based on surveillance videos, which reached up to 95.3%
accuracy. However, the extensive deployment of intrusive
occupancy detection is challenging due to the high instal-
lation cost, additional operation requirements (e.g., the illu-
mination condition for cameras), and privacy concerns. On
the other hand, non-intrusive occupancy detection relies on
infrastructure sensors that monitor parameters like WiFi [15],
Bluetooth [16], and radio-frequency identification (RFID) [17].
For example, a WiFi-based occupancy classification system
provided detection with a 72.7% accuracy, which helped
save 26.4% of energy consumption in cooling and ventila-
tion demands [18]. In addition, an RFID-based occupancy
detection system tracked stationary and mobile occupants
with corresponding accuracies of 88% and 62%, respec-
tively [17]. Compared to intrusive approaches, the non-
intrusive methods raise fewer privacy issues. Nevertheless,
they still suffer from possibly unsatisfactory accuracies, low
infrastructure/device coverage, and extra occupant partici-
pation. The limitations of both intrusive and non-intrusive
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sensors provide an opportunity to infer building occupancy
from Advanced Metering Infrastructure (AMI) data. For
example, a genetic programming-based feature engineering
technique was used to create machine learning inputs from
AMI data to detect occupancy of a large-scale dataset with
around 90% accuracy [19]. However, AMI-based occupancy
detection is still limited compared to other sensor-based
detection.

The growing penetration of sensors has enabled the devel-
opment of data-driven machine learning models for occupancy
detection. For example, a support vector machine (SVM) was
developed to detect occupancy patterns and achieved over 80%
accuracy, outperforming the hidden Markov model (HMM)
and k-Nearest Neighbours (kNN) model [20]. Zhao et al. [21]
compared a collection of machine learning models in occupant
behavior detection, including a decision tree (DT), an SVM,
and a Bayes network, and found DT was superior to other
models. Moreover, the random forest (RF) model was rec-
ognized as a better model than HMM and SVM in [22] with
around 90% accuracy. While shallow machine learning models
have been extensively adopted, deep learning is far from fully
explored in occupancy detection problems. Compared to shal-
low learning methods, deep learning captures patterns in the
raw data through representation learning without heavey fea-
ture engineering [23]. For example, an autorencoder long-term
recurrent convolutional network was developed to identify
the occupant activity with WiFi-enabled Internet of Things
devices [24].

To bridge the gap in occupancy detection using widely avail-
able AMI data, in this paper we propose a deep learning
architecture by sequentially stacking a CNN and a bidirec-
tional long short-term memory network (BiLSTM). CNN is
capable of learning local spatial features from the input but
lacks the ability to learn sequential correlations while recur-
rent neural networks (RNNs) are specialized for temporal
modeling but unable to extract features in a parallel manner.
The developed CNN-BiLSTM architecture is expected to cap-
ture both spatial and contextual representations of the AMI
data. The main contribution this paper is developing a deep
learning model that combines CNN and LSTM architectures,
which performs occupancy detection from AMI data without
heavy feature engineering.

The remainder of the paper is organized as follows.
Section II formulates the occupancy detection problem and
proposes the CNN-BiLSTM architecture for AMI-based detec-
tion. Experimental setups, including the data, benchmark
models, and the training strategies, are described in Section III.
Section IV analyzes the results. Section V discusses the sen-
tivity and applicability of the model. Section VI concludes the
paper.

II. METHODOLOGY

The real-time occupancy information is unintrusively
inferred from AMI data based on the developed CNN-BiLSTM
model. This section first formulates the occupancy detection
as a binary classification problem. The details of the two cor-
nerstone components, i.e., CNN and LSTM, are concretely

introduced. At last, the overall occupancy detection framework
is presented.

A. Problem Formulation

In this paper, we seek to identify the real-time occupancy
condition, y ∈ R

N×1, of a house from its AMI data, X ∈ R
N×F

by sequentially using a CNN model and an LSTM model [25]:

ŷ = F(X, W) = FR{FC(X, WC), WR} (1)

where N and F respectively denote the sample size and fea-
ture dimension; y and ŷ are actual label and detected output,
respectively; F, FC, and FR stand for the occupancy detection
model and its CNN and LSTM components, respectively; W,
WC, and WR are the trainable parameters in the developed
CNN-BiLSTM, CNN, and LSTM models, respectively. Note
that the CNN-BiLSTM model is trained in a supervised learn-
ing manner. Therefore, both the AMI data and occupancy
labels are required in the training stage, but only AMI data is
needed in the detection stage. However, the occupancy labels
can be obtained through transfer learning and unsupervised
learning in real-world applications. The applicability of this
work will be discussed in Section V.

Occupancy detection is a binary classifiction problem, in
which the house could be either occupied or vacant, y ∈ {0, 1},
at every timestamp (each sample). Therefore, the weighted
binary cross-entropy is designed as the loss function, which
considers the imbalanced labels:

J(W) = − 1

N

N∑

n=1

[
ωyn log

(
ŷn

)+ (1− ω)(1− yn) log
(
1− ŷn

)]

(2)

where ω is the binary cross-entropy weight, defined as: ω =
PY [y = 0|y ∈ y]. The objective is to optimize parameters of
the developed network by minimizing the loss function in an
end-to-end manner (the optimizatin method will be introduced
in Section III-C).

B. Convolutional Neural Network (CNN)

CNN architectures have one or multiple feature learning
blocks (FLB) that consist of a convolutional layer and a
max-pooling layer. A convolutional layer (indexed by l and
represented by green blocks in Fig. 1) contains a filter bank
with D(l+1) filters. Each filter function is convoluted with the
input to construct a set of feature maps: Zl =Wl ∗ Xl + bl.

After convolutions, an element-wise rectified linear unit
(ReLU) activation function is used in each FLB to add nonlin-
earity to the network. The ReLU function is selected because
of its computational efficiency, better convergence, superior
performance, and the amelioration of vanishing gradients com-
pared to others, such as the sigmoid function [26]. The ReLU
function is applied to every element of its input (which is the
feature maps of the last convolutional layer).

The last layer of an FLB is a max-pooling layer (repre-
sented by red blocks in Fig. 1), which is used to achieve more
translation invariance during spatial representation learning.
A unified max-pooling layer with a non-overlapping moving
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Fig. 1. The developed end-to-end occupancy detection framework based on CNN-BiLSTM and its tensor manipulation.

window (size 2×1 and stride 2) is applied to sub-sample the
convoluted feature maps by a factor of 2.

C. Long Short-Term Memory Network (LSTM)

Recurrent neural networks (RNNs) have been proved to
be efficient in processing temporal data. Nevertheless, con-
ventional RNNs suffer from two limitations, known as the
vanishing gradient problem during back-propagation and the
inadequate modeling of backward dependencies [27], [28].

To tackle the first issue, the LSTM network, an RNN archi-
tecture with gated regulators, is deployed. In this paper, an
LSTM network is stacked upon the CNN component to learn
the contextual dependencies, shown in the second dashed box
at the bottom of Fig. 1. Each LSTM block is composed of
a memory cell, a forget gate, an input gate, and an output
gate. Denoting the activation vectors of the forget, input, out-
put gates and the memory cell as f , i, o, and c, the nodal
connections and tensor operations in a forward LSTM hidden
layer are expressed as:

f t = σ
(
Wf

[
ht−1, Xt

]+ bf
)

(3a)

it = σ
(
Wi

[
ht−1, Xt

]+ bi
)

(3b)

c̃t = tanh
(
Wc

[
ht−1, Xt

]+ bc
)

(3c)

ct = f t ∗ ct−1 + it ∗ c̃t (3d)

ot = σ
(
Wo

[
ht−1, Xt

]+ bo
)

(3e)

ht = ot ∗ tanh(ct) (3f)

where Wf , Wi, Wc, and Wo are the input weight matrices,
while bf , bi, bc, and bo are the cooresponding bias vectors;
σ(·) and tanh(·) are the logistic sigmoid and hyperbolic tan-
gent activation functions; h is the hidden state, which is also
output of the LSTM hidden layer; c̃ is the new state candidate
vector; and the bracket is the concatenation operator.

Both forward and backward dependencies should be
included in the time series forecasting, especially in time
series with evident periodicities, such as AMI data [29].

This is because that the backward dependencies captured in
reverse-chronologically ordered data provide unique and use-
ful information that the forward dependencies can not provide.
The backward features can possibly improve the model per-
ofrmance, as is proved in many fields [29]. However, most
recurrent models (time series models or RNNs) can only deal
with unidirectional dependencies. To solve this issue, a bidi-
rectional LSTM (BiLSTM) layer is included in the LSTM
configuration to capture both forward and backward depen-
dencies in the AMI data. The node connections and tensor
calculations in a BiLSTM are almost identical to a unidirec-
tional LSTM, except for the processing directions. Specifically,
the operations within a BiLSTM have two directions, such as:

−→
f t = σ

(−→
Wf

[−→
h t−1,

−→
X t

]
+−→b f

)
(4a)

←−
f t = σ

(←−
Wf

[←−
h t+1,

←−
X t

]
+←−b f

)
(4b)

where −→ and ←− denote forward and backward operations,
respectively. Two hidden state vectors,

−→
h t and

←−
h t, are gen-

erated independently and concatenated to the final hidden state
vector in the BiLSTM layer:

ht =
[−→

h t,
←−
h t

]
. (5)

D. The Overall CNN-BiLSTM Occupancy Detection
Framework

The overall framework of the developed CNN-BiLSTM
architecture and its tensor manipulations are illustrated in
Fig. 1. The architecture is built between AMI data and house
occupancy in an end-to-end manner. A batch of AMI data is
first convoluted to spatial feature maps through the CNN con-
figuration of CNN-BiLSTM. A VGGNet-like (i.e., a popular
CNN architecture) CNN structure is constructed due to the out-
performance of VGGNet over other CNN configurations [30].
As shown in the bottom left dashed box of Fig. 1, the CNN
configuration has two sequentially stacked FLBs and a total of
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Fig. 2. Benchmark parameter, hyperparameter, and topology grid search
optimization with 10-fold cross-validation. Note that the GP kernel is opti-
mized automatically in the training process, therefore, is not included in the
this optimization.

four layers (two convolutional layers and two max-pooling lay-
ers). The filter numbers of the two FLBs are 128 and 64. The
topology and hyperparameters of the designed CNN architec-
ture are determined by grid search optimization with 10-fold
cross validation. Specifically, three-layer CNNs are built with
different combinations of filters. The CNN with 128, 64, and
0 filters in the first, second, and third layer outperforms other
architectures. The performance of models with various topolo-
gies and hyperparameters is shown in Fig. 2a. There are a
total of 24 3-dimensional figures in the CNN optimization,
however, only 3 figures with the best third dimension value
are shown in Fig. 2a. The designed CNN part is expected to
extract high-level abstract spatial features from the AMI data.

The extracted abstract CNN features are fed into the LSTM
configuration. Although LSTM with one hidden layer might
be able to capture the contextual patterns in the AMI data,
increasing the depth of architecture by vertically stacking
multiple hidden layers can enhance the performance [31].
Therefore, three LSTM blocks are stacked to operate the
hidden state at different timescales and learn hierarchical rep-
resentations of convolutional time series in the AMI data. As
shown in the bottom middle dashed box of Fig. 1, the first
LSTM layer extracts temporal features in the form of hidden
state from the previous convolutional feature maps. Then, a
BiLSTM layer considers both forward and backward depen-
dencies in the configuration, which are combined by the last
LSTM layer. The numbers of neurons in the first, second, and
third LSTM layers are 50, 100, and 50, respectively. Similar
to CNN, the topology and hyperparameter optimization of the
LSTM is performed by the grid search with 10-fold cross val-
idation on top of the optimal architecture. Only three LSTM
layers are included in the LSTM architecture, since by adding
more layers, the validation accuracy results in diminishing
returns. Three 3-dimensional figures with the best third dimen-
sion value are shown in Fig. 2b. It is first observed that by
adding the LSTM components, the validation accuracy is sig-
nificantly improved. In addition, the hyperparameters of the

TABLE I
HYPERPARAMETERS OF LAYERS IN THE

DEVELOPED CNN-BILSTM MODEL

LSTM layers have a stronger impact on the model performance
than those of CNN layers.

The last part is a dense layer configuration, which consists
of two fully-connected layers and a classification layer. The
hidden states of the last LSTM layer are flattened and fed into
the first dense layer, whose outputs are input to the second
dense layer:

Zl =Wl · Xl + bl (6)

where all the inputs are transmitted to the output, which is
passed to the next dense layer. The last layer of the framework
is a sigmoid classification layer:

Zl = 1

1+ e−Wl·Xl+bl (7)

where l = 10. Then the occupancy condition can be deter-
mined by applying a threshold to the last-layer output:

ŷ = H(z− th) (8)

where H(·) is the Heaviside step function and th = 0.5 is
the threshold value. Please note the network configuration
and hyperparameters are empirically determined by the best
validation accuracy.

The hyperparameters of each layer of the developed CNN-
BiLSTM framework are listed in Table I. The framework
with hyperparameters in Table I has 240,489 trainable param-
eters (2.5 MB), which is a relatively small network, compared
to other architectures (e.g., 16-layer VGGNet has 528 MB
weights). Parameters in each layer are initialized by the Xavier
method, where biases are initialized as zeros and the initialized
weights conform a Gaussian distribution [32]. The tensor pro-
cessing is illustrated at the top of Fig. 1. To avoid overfitting,
20% of neurons are randomly dropped in the convolutional,
LSTM, and dense layers.

III. EXPERIMENTS

This section introduces the numerical experiments for AMI-
based occupancy detection, including the experimental dataset
description, benchmark model selection, deep learning hyper-
parameter settings, and the model training process.
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TABLE II
DATA SUMMARY OF CASE STUDIES

A. Data Description

The dataset we used to validate the developed CNN-
BiLSTM model is the Electricity Consumption and Occupancy
(ECO) dataset.1 ECO dataset is the largest publicly available
dataset with both AMI and occupancy data [33]. The data
contains general parameters like most AMI datasets, such as
current, voltage, phase angle, and power. The fine-grained data
were collected in five houses in summer and winter periods
with one-second interval (aggregated from data with 1 Hz
frequency). Basic features were extracted from the real power
of each phase and the sum of all phases within every minute,
including the minimum, maximum, arithmetic average, stan-
dard deviation, sum of absolute difference, autocorrelation at
lag 1, and range. Please refer to [34] for more EKO AMI
data and its feature extraction. Then, the minute data is flat-
tened every hour in the CNN input format with data width
W = 60. To ensure the successful training of the classifica-
tion models, the ECO data were quality-controlled with two
criteria: (i) the data length should be more than 900, and
(ii) both occupancy labels (i.e., occupied and vacant condi-
tions) should be more than 10% of the total occupancy data.
Four periods of data from three houses qualified both criteria,
which are summarized in Table II and used for case studies.
We believe the general format and similar quality issues of the
ECO dataset ensure the applicability of the developed method
to other datasets. The data of each case study was divided into
training, validation, and testing datasets by a ratio of 3:1:1,
which is used to train one CNN-BiLSTM.

B. Benchmark Models

A collection of six state-of-the-art machine learning classi-
fiers are used to compete with the developed CNN-BiLSTM
model, which are a kNN model [35], an SVM with linear
kernel [35], a Gaussian process model (GP) [36], a RF [13], a
multi-layer perceptron classifier (MLP) [37], and an adaptive
boosting model (AdaBoost) with decision trees as base learn-
ers [38]. The benchmark model pool covers non-parametric
model (kNN), kernel-based model (SVM), feedforward neu-
ral network (MLP), and ensemble learning models (RF and
AdaBoost), which are widely used in occupancy detection and
other classification problems. The parameters, hyperparame-
ters, and topologies of benchmark models were optimized by
the 10-fold cross-validation grid search based on the training
and validation datasets. The optimization processes are visu-
alized in Fig. 3 and the results are listed in Table III, where
definitions of parameters can be found in scikit-learn
library in Python [39].

1https://www.vs.inf.ethz.ch/res/show.html?what=eco-data
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Fig. 3. Benchmark parameter, hyperparameter, and topology grid search
optimization with 10-fold cross-validation. Note that the GP kernel is opti-
mized automatically in the training process, therefore, is not included in the
this optimization.

TABLE III
OPTIMAL BENCHMARK MODEL HYPERPARAMETER

In addition to the machine learning models, the developed
CNN-BiLSTM are also benchmarked against several deep
learning models to verify the effectiveness of combined
CNN-BiLSTM and BiLSTM architectures. The deep learn-
ing benchmarks include CNN, LSTM, CNN-LSTM without
BiLSTM, and convolutional LSTM (CLSTM). Their topolo-
gies (i.e., layer number) and hyperparameters (i.e., neurons in
each layer) are the same as CNN-BiLSTM model.

C. Deep Learning Training

The CNN-BiLSTM is trained by mini-batch stochastic gra-
dient descent (SDG). SDG minimizes the objective function
J(W) in Eq. (2) by updating the parameters in the oppo-
site direction of its gradients with respect to the parameters.
The complete training dataset is passed forward and back-
ward through the network with 100 epochs. Mini-batches
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(B := [X, y]), with a batch size of 30, are randomly gener-
ated to shuffle the data order in every epoch. In each iteration,
gradients are calculated by averaging the gradients over the
mini-batch. The mini-batch SDG enhances the convergence
stability and efficiency, since it reduces the variance of param-
eter updates and utilizes the matrix optimization techniques.
The learning rate scheduling is used to dampen training oscil-
lations. Specifically, the training starts with a learning rate of
0.1 and reduces the learning rate by 50% when a plateau is
reached for more than 10 epochs. To reduce the risk of conver-
gence to local minima, momentum is adopted in the training.
The weights are updated with the above techniques as:

Vi+1 = γ Vi + ηi+1∇WJ(W;B) (9a)

Wi+1 =Wi − Vi+1 (9b)

where i is the iteration index; V is the weight update matrix;
γ = 0.9 is the momentum and η is the learning rate.

IV. RESULTS AND DISCUSSION

The case studies are conducted on a workstation with an
Intel Xeon E5-2603 1.6 GHz CPU and an NVIDIA TITAN V
GPU. The CNN-BiLSTM and benchmark models are imple-
mented using the Keras library with Tensorflow backend
and the scikit-learn library in Python version 3.6. Since
randomness exists in the experiments (e.g., sampling, SDG,
etc.), experiments are repeated 10 times with the same ran-
dom number generator seed to improve the reproducibility and
consistency. It took around 3.7ms to detect the occupancy at
a time step, which is applicable for real-time detection.

A. Evaluation Metrics

As a binary classification problem, the occupancy detection
results can be evaluated based on a 2×2 confusion matrix. The
four elements in the confusion matrix are: (i) true positive
(TP), denoting the count that a house is actually occupied
and is detected occupied, (ii) false positive (FP), denoting the
count that a house is actually vacant but is detected occupied,
(iii) true negative (TN), denoting the count that a house is
actually vacant and is detected vacant, and (iv) false negative
(FN), denoting the count that a house is actually occupied but
is detected vacant.

Five metrics are calculated based on the confusion matrix,
including accuracy (ACC), sensitivity (SNS, also known as true
positive rate, denoted as TPR, or recall), specificity (SPC, also
known as true negative rate), precision (PRC), and F1 score
(F1) [40], [41]. These five metrics quantify the effectiveness of
occupancy detection from different perspectives. Specifically,
ACC is the overall correctness of occupancy detections. SNS
measures the proportion of actual occupied conditions that are
correctly detected as such and SPC measures the proportion
of actual vacant conditions that are correctly detected as such.
PRC indicates the success probability of detecting a correct
occupied condition. F1 takes several metrics into consideration
in the imbalanced classification problems. A larger ACC, SNS,
SPC, PRC, or F1 value indicates a better occupancy detection.

The occupancy condition is determined based on a thresh-
old th = 0.5, which has a significant impact on the detection

performance. Therefore, another set of metrics are used to
assess the classifier performance over the entire operating
range, which are the receiver operating characteristic (ROC)
curve and area under the ROC curve (AUC). The former one
is a curve of TPR against false positive rate (1−SPC, denoted
as FPR) at various threshold settings, which can also be used
to determine the best th.2 A larger deviation between the ROC
curve and the diagonal line represents a better occupancy
detection. The AUC value is a comprehensive measurement
of the ROC curve, where a larger AUC value (maximum
AUC = 1) indicates a better result.

B. Basic Results

Confusion matrices of one set of experiments (randomly
selected) are shown in Fig. 4. Results of four cases are located
in different rows and matrices of eleven models are in dif-
ferent columns. It is found that testing data labels could be
balanced, although all four cases have imbalanced labels in
the whole dataset (as listed in Table II). For example, Case2
has 115 vacant conditions and 106 occupied conditions in the
testing data. The diversity of the four cases directly impacts the
model performance. For example, results of the kNN model
have more FP than TN in Case1 but vice versa in Case2 and
Case4. Moreover, different models show distinctive learning
abilities in the same case. For example, SVM, GP, and MLP
accurately detect more occupied conditions, while AdaBoost
is more powerful in detecting the vacant condition in Case2. It
is concluded that both the dataset and the benchmark models
are diverse and general enough for the comparisons.

C. CNN-BiLSTM Outperformance

The evaluation metrics are calculated based on confusion
matrices for each set of experiments, such as shown in Fig. 4,
averaged over 10 repeats, and listed in Table IV. Among
benchmark models, every model has the chance to generate
satisfactory occupancy detection, since eight out of ten bench-
mark models outperform others in some cases and based on
some metrics. However, none of the benchmark models can
always beat the others in all the four cases. Moreover, it is
observed that some models make extremely assertive detec-
tions, such as GP, which leads to 100% SNS but 0% SPC in
Case1, Case3, and Case4. This is due to that some models
are significantly impacted by the imbalanced data and tend
to assign dominant label to the detection results, as shown in
Fig. 4. SVM and RF are also occasionally influenced by the
imbalanced training data. Some benchmark models are not
robust, which is illustrated by the nonnegligible variance of
some metrics over 10 experiment repeats, such as SPC of RF
in Case2 and SPC of MLP in Case4.

The developed CNN-BiLSTM model shows encouraging
accuracy in both the occupied and vacant detections based on
SNS and SPC. More importantly, the CNN-BiLSTM model is
more accurate than benchmark models in all the four cases,

2Typically, the threshould th is set as 0.5 in classification problems.
However, the threshould can be optimized by selecting an operating point
that is close to ideal or far from random on the ROC curve, if the data has
stable characteristics [42].
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Fig. 4. Confusion matrices of the occupancy detection results. The darker color indicates a higher frequency and the grey color means a zero occurrence.
Positive diagonal elements indicate right detections and negative diagonal elements show the wrong detections.

TABLE IV
EVALUATION METRICS [%] AND TRAINING TIME [MINS] OF OCCUPANCY DETECTION RESULTS

indicated by two overall evaluation metrics, ACC and F1. The
average ACC and F1 over the four cases and 10 experiment
repeats are 89.41% and 91.55%, respectively. Specifically, the
designed architecture in the CNN-BiLSTM effectively takes
advantages of both CNN and LSTM learning abilities in cap-
turing the spatial and temporal features in the data, revealed by
its superior performance than LSTM and CNN, respectively.
What’s more, the additional backward temporal dependen-
cies are shown to further enhance the occupancy detection

accuracy by comparing CNN-BiLSTM and CNN-LSTM. In
contrast to CLSTM, the stacked CNN and LSTM architecture
of the CNN-BiLSTM is more advanced than the architecture
of encoding CNN within LSTM in performing building occu-
pancy detection. The robustness of the CNN-BiLSTM model
is not only revealed in diverse cases but also shown in 10 sets
of experiments.

The occupancy condition is determined by both the classi-
fication probability and the threshold, as indicated in Eq. (8).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 04,2022 at 05:16:56 UTC from IEEE Xplore.  Restrictions apply. 



FENG et al.: DEEP LEARNING-BASED REAL-TIME BUILDING OCCUPANCY DETECTION USING AMI DATA 4497

Case3 Case4

Case1 Case2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

FPR

T
P

R
CNN−BiLSTM
kNN
SVM

GP
RF
MLP

AdaBoost
CNN
LSTM

CNN−LSTM
CLSTM
Baseline

0.00

0.25

0.50

0.75

1.00

Case1 Case2 Case3 Case4
Case

A
U

C

CNN−BiLSTM kNN SVM GP RF MLP AdaBoost CNN LSTM CNN−LSTM CLSTM

Fig. 5. Speculation model performance by ROC and AUC.

Hence, ROC and AOC are adopted to assess the model
performance independent of the choice of th. To obtain ROC,
a set of th values, ranging from 0 to 1, are used to deter-
mine ŷ and calculate TPR and FPR, as shown in Fig. 5a. The
perfect classifier has the ROC curve going straight up the ver-
tical axis then along the horizontal axis. The classifier that
randomly generates occupancy detection results sits on the
diagonal and the classifier detects completely reverse results
has a curve in the bottom left part of the ROC space. Therefore,
the developed CNN-BiLSTM model shows better performance
in terms of the “detectability” and robustness with different
thresholds. From AUC means and variances in Fig. 5b, it is
observed that the outperformance and robustness of the CNN-
BiLSTM model are consistent in the 10 experimental sets. For
example, compared to shallow learning models, such as kNN,
GP, RF, and MLP, the CNN-BiLSTM model has larger AUC
in all cases and runs. In Case 2, two models show competitive
performance to the CNN-BiLSTM model, which are SVM and
AdaBoost. However, considering their robustness in different
cases, they are not suitable for wide applications. Moreover,
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Fig. 7. The occupancy labels, detection probabilities, and results of Case3.

CNN-BiLSTM outperforms other deep learning benchmarks,
which indicates its effective architecture design.

Figure 6 illustrates the behavior difference of the models
by their detection probability distributions. It is observed that
deep learning models have distributions with similar shapes,
whereas the CNN-BiLSTM model has more detections with
probability close to 1. The detection probability distributions
of shallow learning models are distinctive to CNN-BiLSTM
and are various. Figure 7 digs into the reason of better occu-
pancy detection performance of the CNN-BiLSTM model by
comparing its detection probabilities and results to those of
the three best benchmarks, i.e., RF, AdaBoost, and CNN-
LSTM. The advantages of the CNN-BiLSTM are twofold. The
first one is more accurate detection results, revealed by the
smaller deviations between detections and actual conditions.
Specifically, the CNN-BiLSTM model only misclassifies the
occupancy three times at three discrete hours, which is less
harmful to the demand response decisions. In contrast, all
the three best benchmarks generate more and longer-period

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 04,2022 at 05:16:56 UTC from IEEE Xplore.  Restrictions apply. 



4498 IEEE TRANSACTIONS ON SMART GRID, VOL. 11, NO. 5, SEPTEMBER 2020

Fig. 8. CNN layer reactions to occupancy conditions in terms of neuron
activations.

wrong detections. The second advantage is that the CNN-
BiLSTM model is more confident in the detection. Since the
final occupancy detection results are determined by Eq. (8),
classification probabilities that are closer to 0/1 are more con-
fident and stable when being classified into vacant/occupied
conditions. Compared to other models, such as AdaBoost,
the CNN-BiLSTM model shows more confidence, which is
illustrated by the darker color of the classification probability
boxes. These two advantages explain the better performance
of the developed CNN-BiLSTM model.

D. CNN-BiLSTM Visualization

Deep learning models are generally regarded as black
boxes, since their inner operation mechanism is challenging to
interpret. In this section, we explain the working logic of the
CNN-BiLSTM model by digging into the neurons of important
layers.

Different from typical feature engineering that is widely
used in shallow learning, feature importance can not be ranked
by neither filter methods nor wrapper methods in the CNN-
BiLSTM. This is due to that the input of the CNN-BiLSTM
model is augmented and extracted by filters in the first CNN
layer rather than being fed into activation functions as in
MLP. As an alternative, we explore the convolutional filters
and analyze patterns they emphasize, as they look directly at
the input data. It is especially interesting to show the con-
volutional features by investigating the reactions of the CNN
feature extractors when fed with data of vacant and occupied
cases. Figure 7 shows the neuron activations of the two CNN
layers (i.e., C1 and C2) in two occupancy conditions. The C1
layer has output with dimension of a 128×58 (i.e., the num-
ber of filters and the number of moving windows) and the C2
layer has output with dimension of a 64×27. As seen from the
figure, features extracted by several filters in the C1 layer are
evidently discintive in two conditions. And these distinctions
are reinforced by C2 layer filters, as shown from the brighter
colors in C2 activations.

In addition, the feature learning process of the CNN-
BiLSTM model is analyzed by visualizing the feature
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Fig. 9. Visualization of the feature distribution of test samples via t-SNE
method.

distribution in each layer (meaningless max-pooling lay-
ers are excluded) via the t-Distributed Stochastic Neighbor
Embedding technique (t-SNE) [43]. The t-SNE converts high-
dimensional layer outputs to two-dimensional samples for the
entire Case2 testing dataset, as shown in Fig. 9. It is first
observed from Fig. 9a that input samples of the two occupancy
conditions are mutual included. Then, most vacant samples are
able to be discriminated from occupied samples by the two
convolutional layers, as shown in Figs. 9b and 9c. Moreover,
the temporal learning abilities of the three LSTM layers easily
isolated part of occupied samples from vacant samples. It is
also worth to point out that the progressively improved classi-
fication in Figs. 9d-9f indicates effectiveness of the designed
stacked BiLSTM architecture. The last two dense layers make
the occupancy conditions linearly dividable. Even though the
CNN-BiLSTM efficiently detects most occupancy conditions,
there are still three points being mis-classified. This is pos-
sibly due to that the occupants leave the electric appliances
turnning on and leave the house or the occupants go back
home but without changing the electricity use patterns, which
leads to similar features with counterpart conditions in the
CNN-BiLSTM.

V. SENSITIVITY ANALYSIS AND DISCUSSION

The developed CNN-BiLSTM model has been verified
based on the ECO dataset, which is the largest dataset with
both AMI and occupancy data. Even though the dataset is still
small compared to those applied in other research, such as the
global energy forecasting competition (GEFCom) dataset [44],
the CNN-BiLSTM model is robust and flexible to large-scale
real-world AMI data. In this section, we perform the data sen-
sitivity analysis and discuss model applicability to AMI data
without occupancy labels.

A. Sensitivity Analysis

The sensitivity analysis case studies are performed based on
Case3 due to it’s relevantly more balanced and larger. First, we
explore the CNN-BiLSTM model’s sensitivity to data length.
Training data with different lengths are created, while the test-
ing data remains the same. A total of ten cases with randomly
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Fig. 10. Sensitivity analysis results.

selected training samples have 10%–100% data, compared to
the original training dataset. Note that data of occupied and
vacant labels are sampled independently to ensure the same
label imbalance. Each case is run ten times with different ran-
dom number generator seeds. The topology, hyperparameters,
and training strategies are kept the same. Figure 10a shows that
the CNN-BiLSTM trained with a larger training dataset gener-
ally has a better occupancy detection performance. By training
the model with a large epoch value with shuffled data order,
it is able to compensate the small dataset by some extend.

Another important factor that impacts the model
performance is label imbalance. In this study, we require that
both labels should have more than 10% samples in the total
data. This is because that the occupancy of an extremely
imbalanced dataset is too easy to be detected. To verify
this, sensitivity analysis of the CNN-BiLSTM performance
to label imbalance is conducted by changing the ratio of
vacant samples to the total samples. The case studies are
repeated ten times with all the settings same as the previous
sensitivity analysis. It is observed from Fig. 10b that by
assigning the occupied condition to all the detection results
(i.e., SPC=0 while SNS=1), the overall accuracy and F1
are close to 1. With a relatively more balanced dataset, the
CNN-BiLSTM has satisfactory performance regarding all the
metrics. Therefore, only the most challenging detection cases
are included in the previous sections.

B. CNN-BiLSTM Applicability

A big concern of this research is how to extend the developed
CNN-BiLSTM model from well-labelled data to real-world
AMI data without occupancy labels. Generally, there are two
appraches to establish occupancy labels for this large-scale
application. The first approach is using thresholding [12]
or unsupervised machine learning models [22]. The second
approach is transfering the learned patterns between AMI and
occupancy from models with accurate out-of-sample rate.

Another limitation of this research is that the dataset
contains less diverse houses and limited socio-demographic
information, although the ECO dataset is the largest dataset
of its kind. Typically, commercial and industrial buildings
have more regular occupancy patterns than residential build-
ings [22]. Therefore, we assume that the CNN-BiLSTM
performance should at least have the same accuracy level
when applied to occupancy detection of commercial and indus-
trial buildings. Also, socio-demographic characteristics of the
building, such as household age, house type, are expected to
help the occupancy detection by grouping houses with simi-
lar patterns. However, this information is not available in the
ECO dataset but will be explored by using other dataset or
label discovery techniques [45] in the future.

VI. CONCLUSION

This paper developed a deep learning-based real-time
building occupancy detection framework by using Advanced
Metering Infrastructure (AMI) data. The sequentially stacked
deep learning architecture performed latent feature learning
through an end-to-end manner. The architecture consisted
of a VGGNet-like four-layer convolutional neural network
(CNN) and a three-layer bidirectional long short-term memory
(BiLSTM) network. CNN learned spatial patterns from the
AMI data and outputted feature maps. Then, the LSTM
network derived forward and backward contextual dependen-
cies from the CNN features. Last, a two-layer fully-connected
dense layer and a sigmoid classification model generated the
detection probability and was converted to the detection results
by a threshold. Numerical experiments on a diverse publicly
available dataset set showed that:
(1) The developed CNN-BiLSTM network accurately

detected the building occupancy from purely AMI data
with around 90% accuracy;

(2) The CNN-BiLSTM model consistently and robustly
outperformed the state-of-the-art classification models,
including a k-Nearest Neighbours model, a support vector
machine, a Gaussian process model , a random forest, a
multi-layer perceptron classifier, and an adaptive boosting
model;

(3) The developed CNN-BiLSTM model showed superior
performance than other advanced deep learning archi-
tectures, including CNN, LSTM, CNN-LSTM without
BiLSTM, and convolutional LSTM.

(4) The developed CNN-BiLSTM model showed high con-
fidence in the detection and was less dependent on the
classification threshold.

Future work will be conducted in four directions: (i) explor-
ing deep learning with attention mechanisms in the occu-
pancy detection, (ii) investigating the AMI-based occupancy
prediction, (iii) detecting the occupancy of buildings without
occupancy labels by transfer learning, and (iv) occupancy-
enabled demand response & smart home management design.
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