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7.1 Introduction

Artificial intelligence (AI), the simulation of human intelligence by
machines, has brought technological revolutions to the industry and has
become part of our life. AI has surpassed human in many fields, including
visual recognition, language processing, reading, and playing video games,
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and is assisting in autonomous driving, robotic surgery, and legal judgment.
In the energy sector, AI is also making profound impacts.

With the deployment of smart grid technologies, power systems have
benefited from AI techniques, as shown in Fig. 7.1. The power system
data has characteristics of high-volume, high-velocity, and high-variety.
For example, sensors such as phasor measurement units (PMUs) take mea-
surements at a millisecond resolution. The advanced metering infrastruc-
ture (AMI) in the New York state collects more than 127 TB of
consumption data per day [1]. With the big data in power systems, AI
provides new solutions to system planning, operation, maintenance, mar-
ket monitoring, and risk management [2]. For example, reinforcement
learning (RL) has been used for power system stability control [3], auto-
matic generation control (AGC) [4], and optimal power flow control [5].
Deep learning has been applied to energy resource assessment [6], injec-
tion attack detection [7], and fault diagnosis [8]. A more comprehensive
review on AI applications to power systems can be found in Ref. [9].

Among various AI applications in power systems, forecasting is one of
the most popular use cases. Forecasting in power systems is to predict the
future load, renewable generation output, or electricity and energy price,
which are used to assist power system operations at different timescales
[10,11]. Therefore forecasting has been widely studied and adopted in
power systems. For example, most of the independent system operators
(ISO) in the United States have adopted load, wind, and solar power
forecasting to assist their system operations [12]. ISO New England uti-
lizes day-ahead forecasts for the dispatch scheduling of generating capacity,
reliability analysis, and maintenance planning for the generators [13].
A number of forecasting projects have been or is being conducted to pro-
mote renewable energy forecasting, such as Wind Forecast Improvement
Project [14], WindView [15], Watt-Sun [16], and SUMMER-GO [17].

Another emerging topic in power systems that relies on AI techniques is
system state estimation. Power system state estimation is to retrieve system
dynamics, for example, voltage magnitude and phase angles, from available
measurements. Traditional methods have challenges in solving state estima-
tion problems with large scale and nonconvexity [18]. Therefore AI techni-
ques have been introduced to help solve state estimation problems through
a learning-based optimization manner [19]. For example, a feedforward
neural network was used to initialize the Gauss!Newton algorithm to solve
the distribution system state estimation in Ref. [20]. An autoencoder was
adopted to estimate the voltage magnitude and angle in Ref. [21].
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In addition, a recurrent neural network (RNN) was trained to estimate the
states of the IEEE 57- and 118-bus systems [18]. Bad data detection and
cyberattack detection are also recognized to impact the system states and,
thus, have also been widely researched. For instance, Hink et al. [22] suc-
cessfully detected cyberattacks with several different machine learning meth-
ods. A support vector machine (SVM) model was used to detect the
stealthy false data injection with nearly 95% accuracy [23].

AI has also been applied to building occupancy detection, which is
critical to building energy management and building-to-grid integration.
The building sector accounts for over 70% of the total electricity con-
sumption in the United States, making the building integration a critical
part of the smart grid. The building occupancy information helps building
management in several ways, such as occupancy-driven demand response
and building energy management. For example, an occupancy-based
feedback control algorithm was applied to a heating, ventilation, and air-
conditioning system and achieved 29%!80% energy savings [24]. Korkas
et al. [25] developed a control optimization method for demand response
management in microgrids considering occupancy information and
reduced energy costs by 20%. Due to the remarkable benefits of the occu-
pancy information, accurate occupancy detection is recognized as a crucial
factor and has received growing attention [26,27].

To demonstrate the AI applications to power systems, this chapter
reviews the state-of-the-art machine learning methods, including ensem-
ble learning and deep learning, in renewable energy forecasting, power
system network reconfiguration, and smart building occupancy detection.

7.2 Modern forecasting technology

This section reviews the state-of-the-art forecasting methods and
discusses the details of two types of ensemble learning-based forecasting
techniques.

7.2.1 Prior research work
Time series forecasting can be categorized based on different criteria, such
as forecasting task (e.g., load, wind, solar, and price), time horizon (e.g.,
short-term, midterm, and long-term), or methods. Fig. 7.2 summarizes a
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rough classification of forecasting methods, which are mainly divided into
deterministic forecasting and probabilistic forecasting. The former can
obtain accurate forecasting results after a specific time horizon, while the
latter can provide probabilistic and confidence levels for the uncertainty of
desired forecasts.

7.2.1.1 Deterministic forecasting methods
Generally, deterministic forecasting models can be further divided into
three categories: statistical [28], intelligent [29], and ensemble models [30].
Statistical methods refer to the utilization of mathematical theory knowl-
edge such as mathematical statistics, probability theory, and stochastic pro-
cesses. Intelligent models refer to AI models using machine learning and
deep learning. Ensemble models refer to the combination of two different
algorithms or methods. Ensemble models can combine the merits and
characteristics of different methods, which normally perform better than
single models [31]. Conventional statistical models include the autoregres-
sive model, the autoregressive moving average model, and the autoregres-
sive integrated moving average model. The most popular machine
learning algorithms in renewable energy forecasting are artificial neural
networks (ANNs), support vector regression (SVR) model, random forest
(RF), and gradient boosting machine (GBM). For example, Feng et al.
[32] proposed a short-term solar forecasting method based on sky imaging
and pattern recognition. A least squares SVR model was proposed in Ref.
[33] to model the nonlinearity of electric load. A GBM model was devel-
oped to quantify the dataset diversity for short-term wind forecasting [34],
which helps system operational scheduling such as economic dispatch and

Figure 7.2 Machine learning!based forecasting methods categorization.
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unit commitment. Xia et al. [35] proposed a short-term wind power
forecasting method based on neuro-fuzzy network. Results showed that
the trained neuro-fuzzy networks could significantly improve the wind
forecasting accuracy. More deterministic forecasting models can be found
in the latest review papers [36!38].

7.2.1.2 Probabilistic forecasting methods
While deterministic forecasts are critical to power system operations,
probabilistic forecasts provide more quantitative uncertainty information
associated with desired forecasts and have become extremely important
for reliable and economic power system operations. Probabilistic forecasts
usually take the form of probability distributions associated with point
forecasts, namely, the expectation. Existing methods of constructing pre-
dictive distributions can be mainly classified into parametric and nonpara-
metric approaches in terms of distribution shape assumptions. A prior
assumption of the predictive distribution shape is made in parametric
methods, and the unknown distribution parameters are estimated based
on historical data. Parametric approaches generally require low computa-
tional cost, while nonparametric approaches estimate the quantiles
through a finite number of observations. Landry et al. [39] used GBM for
multiple quantile regression to fit each quantile and zone independently
and generate probabilistic forecasts. Sun et al. [40] proposed an aggregated
probabilistic wind power forecasting method based on spatiotemporal cor-
relation, where Copula was used to model the correlation among wind
farms and Gaussian mixture model was used to model the marginal distri-
bution. Zhang and Wang [41] developed a probabilistic forecasting
method based on k-nearest neighbor (kNN) point forecasts through ker-
nel density estimation. Lou et al. [42] used machine learning and multi-
variable regression to predict diffuse solar irradiance. Wang et al. [43] used
deep convolutional neural network (CNN) and wavelet transform to
quantify the wind power uncertainties with respect to model misspecifica-
tion and data noise. Sun et al. [44] developed a probabilistic forecasting
method based on pinball loss optimization among different types of pre-
dictive distributions.

7.2.1.3 Ensemble learning
The ensemble of individual machine learning models is another efficient
way to improve the forecasting accuracy. Methods of constructing
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ensemble forecasts can be mainly classified into competitive ensemble and
cooperative ensemble methods.

Competitive ensemble methods use induction algorithms with differ-
ent parameters or initial conditions to build individual models. The final
refined ensemble prediction is obtained from pruning and aggregating
individual forecasts. Competitive ensemble methods generally require
high data and parameter diversity to get different decisions from individual
predictors. Therefore competitive ensemble methods usually require high
computation cost, and they are usually used in mid-term to long-term
forecasting. Bagging and boosting are two commonly used competitive
ensemble methods. For example, to better account for the performance of
weak models, ensemble forecasting approaches based on adaptive boosting
(i.e., assign smaller weights to the models with larger errors) are used in
Ref. [45]. Feng et al. [11,46] proposed a machine learning!based multi-
model forecasting framework that consists of an ensemble of four single-
machine learning algorithms with various kernels to generate deterministic
wind forecasts and solar forecasts. Machine learning!based competitive
ensemble learning was also used in solar forecasting [47] and load forecast-
ing [48].

For cooperative ensemble methods, the dataset is divided into several
subdatasets and each subdataset is forecast separately, and the final forecasts
are obtained by aggregating all the subforecasts. ANN-based autoregres-
sive integrated moving average [49] and generalized autoregressive condi-
tional heteroskedasticity-based autoregressive integrated moving average
[50] are the two commonly used cooperative ensemble methods that
combine suitable models for linear and nonlinear time series. Ye et al.
[51] developed an AdaBoost-based empirical mode decomposition (EMD)
ANN to generate ensemble wind speed forecasts. Wang et al. [52] devel-
oped a cooperative ensemble method to generate wind speed forecasts,
which improved EMD through decomposing the original data into more
stationary signals with different frequencies. These stationary signals were
considered as different inputs to a genetic algorithm and backpropagation-
based neural network, and the final forecast was the aggregation of each
single prediction.

In addition to wind speed forecasting, ensemble methods have also
been applied to probabilistic wind power forecasting and probabilistic
solar power forecasting. For example, Lin et al. [53] combined multiple
probabilistic forecasting models based on sparse Bayesian learning, kernel
density estimation, and beta distribution estimation. The weight
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parameters of the multimodel ensemble were solved by an expectation
maximizing algorithm and continuous ranked probability score optimiza-
tion. Kim and Hur [54] developed an enhanced ensemble method for
probabilistic wind power forecasting. The wind speed spatial ensemble
was built by using correlation-based weight and kriging models, and the
temporal ensemble was built through an average ensemble of three mod-
els (i.e., an exogenous variable model, a polynominal regression model,
and an analog ensemble model).

7.2.2 Ensemble learning forecasting methodologies
Both competitive and cooperative ensemble learning rely on single mod-
els. Therefore single-machine learning algorithms, including ANN, SVR,
GBM, and RF, are first introduced in this section. Then, two wind fore-
casting methodologies based on competitive or cooperative ensemble
learning are described.

7.2.2.1 Single-machine learning algorithm models
ANN is a popular machine learning algorithm in speech recognition, tar-
get tracking, signal analysis, and nonlinear regression problems (such as
time series forecasting). ANN mimics the action of the human neurons,
and each neuron is a weighted sum of its inputs and is connected to the
neurons in the next layer. A weight decides how much influence the
input will have on the output. The ANN architecture contains one input
layer, one or more hidden layer(s), and one output layer. The output sig-
nal of ANN can be either 0, 1, or any real value between 0 and 1
depending on whether we are dealing with “binary” or “real valued” arti-
ficial neurons. The configuration of the ANN model needs to be well
designed to avoid overfitting issues. ANN can be classified into different
types with different activation functions and learning algorithms. Sigmoid
and hyperbolic tangent are two commonly used activation functions.
Deep learning is also a configuration of ANN, where multiple hidden
layers are built. The mathematical description of ANN is expressed as:

yðnÞi 5 f
XN

j51

wðn;n21Þ
ij yðn21Þ

j 1 θni

 !

(7.1)

where i is a neuron of the nth layer, wij is the weight from the neuron j
in the layer ðn2 1Þ to the neuron i in layer n, and θni is the threshold of
the neuron i in layer n.
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SVM is originally a supervised linear classifier proposed by Cortes and
Vapnik [55]. As one of the most popular classification methods, SVM has
been applied in text categorization, image classification, and other recog-
nition tasks. When dealing with linearly inseparable data, nonlinear
mapping-based kernel methods, K xð Þ:Rn!!Rnh , are used to map the
nonlinear data into the high-dimensional feature space. Then, a linear
hyper plane can be found by maximizing the distance between support
vectors and the hyper plane. The SVM algorithm can also be applied in
regression problems, which is called SVR. However, the compute and
storage requirements increase significantly with the data dimension. The
hyper plane function, also called the SVR function, is described as [56]:

f xð Þ5ωTK xð Þ1 b (7.2)

where ω and b are variables solved by minimizing the empirical risk,
which is given by:

R fð Þ5
1
n

Xn

i51

Θðyi; f ðxÞÞ (7.3)

where Θεðyi; f Þ is the ε-insensitive loss function, expressed as:

Θε yi; fð Þ5
:f 2 y:2 ε; if:f 2 y:$ ε

0; otherwise

(

(7.4)

Then the optimal hyper plane can be found by solving the inequality-
constrained quadratic optimization problem.

GBM is a highly customizable learning algorithm, which is widely
used in the regression and classification fields. GBM model relies on the
combination of “weak learners” to create an accurate learner and, there-
fore, is able to generate both deterministic and probabilistic results in time
series forecasting. The combination is achieved by adding the weighted
base learner to the previous model iteratively. The principle of GBM is
illustrated by the pseudo-code in Algorithm 1. In each iteration the nega-
tive gradient of the chosen loss function is calculated and used to estimate
the split variables a by Eqs. (7.5) and (7.6). Then the multiplier β is opti-
mized by Eq. (7.7). The weak learner βhðx; aÞ is added to the previous
model, where h x;að Þ is a learning function.

RF is another supervised ensemble learning method that consists of
many single classification and regression trees (CARTs):
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T 5 t X ; sΛ1

! "
; t X ; sΛ2

! "
; . . . ; t X ; sΛn

! "# $
(7.9)

where T is the set of CARTs, t is a single CART, X is the input to the
RF model, and sΛi is the random vector to extract bootstrap samples that
are determined by the bagging algorithm. The robustness of the RF
model is enhanced by the randomness of the bagging algorithm and the
best splits search process. Since RF is a combination of various regressions,
the model is generally free from overfitting [57].

7.2.2.2 Competitive ensemble learning
A competitive ensemble methodology is developed for short-term wind
forecasting with both deterministic and probabilistic forecasts, which is
called the machine learning!based multi-model forecasting framework
(M3), as shown in Fig. 7.3. The M3 deterministic model has two layers
(note that this is different from ANN layers). The first layer consists of
several machine learning models, that is, ANN, SVM, GBM, and RF,
which are built based on the historical data. These models forecast wind

Algorithm 1 Gradient boosting machine

1 Initialize f0 xð Þ to be a constant, f0 xð Þ5 argminρ
Pn

i51 Ψðyi; ρÞ
2 for i5 1 to M do
3 Compute the negative gradient of the loss function:

yi 52
@Ψ yi;F xið Þð Þ

@F xið Þ

% &

f xð Þ
5 fi21 xð Þ; i5 1; 2; . . . ; nf g (7.5)

4 Fit a model to y by least squares to get at :

at 5 argmin
α;β

Xn

i51

yi2βhðxi; aÞ½ %2 (7.6)

5 Calculate βt by:

βt 5 argmin
β

Xn

i51

Ψ
'
yi; ft21 xið Þ1βhðxi; at

((
(7.7)

6 Update the model by:

ft xð Þ5 ft21 xð Þ1βthðx;at
(

(7.8)

7 end for
8 Output f̂ xð Þ5 fT ðx

(
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speed or wind power as the output. A blending model is developed in the
second layer to combine the forecasts produced by different algorithms
from the first layer, and to generate both deterministic and probabilistic
forecasts. This blending model is expected to take advantage of different
algorithms by canceling or smoothing the local forecasting errors. The
mathematical description is shown as:

yi5 fiðx1; x2; . . . ; xpÞ (7.10)

ŷ5Φðy1; y2; . . . ; ymÞ (7.11)

where fi &ð Þ is the ith algorithm and yi is the wind speed forecasted by
fið&Þ. ŷ is the second-layer blending algorithm.

The M3 deterministic forecasts can also be transferred to probabilistic
forecasts. Specifically, after obtaining deterministic forecasts, a set of
unknown parameters in the predictive distribution are determined by mini-
mizing the pinball loss that is an evaluation metric of probabilistic forecasts.
Note that the optimal distribution parameters are adaptively and dynamically
updated based on the deterministic forecast value at each time stamp. The
optimal adaptive predictive distribution parameters are first determined off-
line with the historical training data. Then a surrogate model is developed
to represent the optimized distribution parameter as a function of the deter-
ministic forecast. At the real-time forecasting stage the surrogate model is
used together with deterministic forecasts to adaptively predict the unknown
distribution parameters and thereby generate probabilistic forecasts.

7.2.2.3 Cooperative ensemble learning
In addition to deterministic forecasts, the ensemble methods could also be
applied to probabilistic forecasts directly. A cooperative ensemble method-
ology of probabilistic wind power forecasts from different type of predic-
tive distributions is introduced in this section, and the overall framework
is illustrated in Fig. 7.4.

In the deterministic forecasting stage, instead of integrating multiple
single-machine learning algorithms together to get a refined forecast, a Q-
learning-enhanced deterministic forecasting method [58] is adopted to
select the best forecasting model from a pool of state-of-the-art machine
learning!based forecasting models (i.e., ANN, SVR, GBM, and RF) at
each time step. To be more specific, the developed method trains Q-
learning agents based on the rewards of transferring from the current
model to the next model. For example, a Q-learning agent will receive a
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reward by transferring from the current forecasting model Mi to the next
forecasting model Mj in each training step, from which the Q-learning
agent will learn the optimal policy of the model selection. Then, this
optimal policy will be applied to select the best model for forecasting in
the next step based on the current model in the forecasting stage. The
dynamic model selection process is expressed as:

S5 sf g5 s1; s2; . . . ; sIf g (7.12)

A5 af g5 a1; a2; . . . ; aI (7.13)

Rt si; aj
! "

5 ranking Mið Þ2 rankingðMjÞ (7.14)

Qe11 se; aeð Þ5 12αð ÞQe se; aeð Þ1α
h
Re se; aeð Þ1 γmaxQe se11; a

! "i
(7.15)

where S, A, R, and Q are state space, action space, reward space, and Q-
table in the dynamic model selection Markov Decision Process, respec-
tively. The parameters s and a are possible state and action, respectively.
The parameter I is the number of models (M ) in the model pool, e is the
episode index with the maximum of 100, α5 0:1 is the learning rate that
controls the aggressiveness of learning, and γ5 0:8 is a discount factor
that weights the future reward. The reward function is defined as the
model performance improvement, which ensures the effective and effi-
cient convergence of Q-learning. More details of this Q-learning-based
dynamic forecasting model selection can be found in Ref. [58].

In the probabilistic forecasting stage, individual probabilistic forecasts are
generated by using each single predictive distribution based on the training
dataset [44]. The unknown parameters (i.e., standard deviations) of each
predictive distribution are optimized. A weight parameter is assigned to
quantile forecasts from each individual model, and these weight parameters
are optimized again by minimizing the pinball loss. Then a surrogate model
is developed to represent each optimal weight as a function of the deter-
ministic forecast. During online forecasting a set of pseudo-optimal para-
meters of the ensemble model is estimated by the surrogate model and
deterministic forecasts. Finally, the method with the minimum pinball loss
is chosen to produce the final ensemble probabilistic forecasts.

7.2.3 Forecasting results
Performance of the single-algorithm and ensemble machine learning
models is evaluated in this section for both deterministic and probabilistic
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wind speed/power forecasting. The ensemble deterministic and multi-
model probabilistic forecasting models are tested on wind speed forecast-
ing. The Q-learning!enhanced deterministic and ensemble probabilistic
forecasting models are tested on wind power forecasting. Two evaluation
metrics are utilized to evaluate the deterministic forecasting accuracy in
both case studies: the normalized mean absolute error (nMAE) and the
normalized root mean square error (nRMSE):
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where x̂i is the forecast value, xi is the actual value, xmax is the maximum
actual value, and n is the sample size.

Pinball loss, one of the most popular metrics, is used to evaluate the
performance of probabilistic forecasting in both case studies. Pinball loss is
a function of observations and quantiles of a forecast distribution. A smal-
ler pinball loss value indicates better probabilistic forecasting. The pinball
loss value of a certain quantile Lm is expressed as:

Lm qm; xið Þ5
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where xi represents the ith observation, m represents a quantile percentage
from 1 to 99, and qm represents the predicted quantile. For a given m per-
centage the quantile qm represents the value of a random variable whose
CDF is m percentage.

7.2.3.1 Case study I: wind speed forecasting based on competitive
ensemble learning
Both the single-algorithm models and ensemble algorithm are applied to
the wind speed data collected near hub height with a 1-hour resolution at
eight sites listed in Table 7.1. For all the eight locations the first 2/3 of
data are used as training data, in which the first 11/12 is used to train
ensemble algorithm and the remaining 1/12 of the training data is used to
build the surrogate model of the optimal standard deviation. The accuracy
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of the forecasts is evaluated by the remaining 1/3 of data. The nMAE and
nRMSE are compared in Tables 7.2 and 7.3, respectively.

The multi-model framework includes multiple individual models in
the first layer and several models in the second layer. Different algorithms
are tested in both layers, which include (1) three SVR models with linear
(SVR_l), polynomial (SVR_p), and radial base (SVR_r) kernels; (2) five
ANN models with different numbers of hidden layers (nl), neurons in
each layer (no), and weight decay parameter (nd) values, and the selected
models employ the feed-forward!backpropagation learning function and

Table 7.1 Data duration at selected sites.
Name Data duration Height (m)

Boulder_NWTC (C1) 2009-01-02 to 2012-12-31 80
Megler (C2) 2010-11-03 to 2012-11-01 53.3
CedarCreek_H06 (C3) 2009-01-02 to 2012-12-31 69
Goodnoe_Hills (C4) 2007-01-01 to 2009-12-31 59.4
Bovina50 (C5) 2010-10-10 to 2012-10-08 50
Bovina100 (C6) 2010-03-03 to 2012-03-01 100
CapeMay (C7) 2007-09-26 to 2009-09-24 100
Cochran (C8) 2008-06-30 to 2011-06-29 70

Note: The case notations (C1!C8) are different from Sections 7.2.3.2 and 7.4.3.

Table 7.2 The normalized mean absolute error (nMAE) (%) of 1HA forecasts.
Method C1 C2 C3 C4 C5 C6 C7 C8

SVR_r 5.101 3.114 6.229 3.799 5.145 4.554 3.662 4.014
SVR_l 4.765 2.886 3.927 3.718 4.891 4.466 3.449 3.984
SVR_p 4.772 2.919 4.267 3.734 4.913 4.572 3.553 4.009
ANN1 4.793 2.921 4.155 3.738 4.936 4.671 3.717 4.007
ANN2 4.789 2.938 4.042 3.735 4.939 4.536 3.560 4.012
ANN3 4.817 2.927 4.096 3.738 4.932 4.494 3.502 4.017
ANN4 4.792 2.906 4.022 3.735 4.924 4.481 3.500 4.005
ANN5 4.793 2.902 3.859 3.727 4.899 4.487 3.480 4.006
GBM1 4.822 2.945 4.468 3.739 4.961 4.479 3.562 4.022
GBM2 4.808 2.941 4.474 3.736 4.963 4.478 3.550 4.020
GBM3 4.806 2.936 4.730 3.768 4.969 4.491 3.504 4.002
GBM4 4.845 2.946 4.348 3.754 4.974 4.544 3.554 4.023
RF1 4.965 3.060 4.207 3.883 5.115 4.703 3.715 4.159
RF2 4.920 3.012 4.221 3.852 5.057 4.637 3.659 4.110
M3 4.623 2.712 3.731 3.654 4.683 4.256 3.223 3.871

Note: The smallest nMAEs among all the models are in bold.
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sigmoid activation function; (3) four GBM models based on different loss
functions (Gaussian and Laplacian) and parameters, that is, number of trees,
learning rate (λ), maximum depth of variable interactions, and minimum
number of observations in the terminal nodes; and (4) two RF models with
different numbers of variables that are randomly sampled as candidates at
each split. In the probabilistic forecasting stage, four widely used predictive
distribution types (i.e., Gaussian, Gamma, Laplace, and noncentral t) are
considered to model the possible shapes of the predictive distribution. The
one with the lowest pinball loss is chosen as the final predictive distribution.

It is seen that none of the single models performs better than the ensem-
ble method. The ensemble models have improved the forecasting accuracy
of the component models by up to 12.9% based on nMAE and 16.4% based
on nRMSE. For the blending algorithms the models with nonlinear blend-
ing algorithms have better performance than the models with linear blend-
ing algorithms. This shows that the forecasts produced from the first-layer
models exhibit a nonlinear relationship with the actual wind speed.

Fig. 7.5 provides an example of the deterministic forecasts along with
the confidence intervals in the form of interval plot at the C2 site from
2012-02-01 to 2012-02-04. The colors of the intervals fade with the
increasing confidence level, ranging from 10% to 90% in a 10% incre-
ment. The intervals are symmetric around the deterministic forecasting
curves with a changing width. When the wind speed fluctuates within a

Table 7.3 The normalized root mean square error (nRMSE) (%) of 1HA forecasts.
Method C1 C2 C3 C4 C5 C6 C7 C8

SVR_r 8.039 4.883 11.769 5.318 7.166 6.363 5.383 5.477
SVR_l 6.954 3.993 5.638 5.095 6.539 6.224 4.813 5.401
SVR_p 6.953 4.011 6.381 5.109 6.545 6.350 4.946 5.423
ANN1 6.907 4.019 6.250 5.123 6.585 6.364 5.065 5.409
ANN2 6.908 4.038 5.974 5.105 6.589 6.260 4.930 5.408
ANN3 6.902 4.026 6.116 5.123 6.579 6.223 4.868 5.402
ANN4 6.930 4.024 5.913 5.124 6.564 6.225 4.888 5.411
ANN5 6.919 4.005 5.483 5.096 6.529 6.207 4.826 5.402
GBM1 6.969 4.105 7.197 5.100 6.605 6.225 4.942 5.413
GBM2 7.016 4.102 7.225 5.103 6.613 6.237 4.936 5.419
GBM3 7.059 4.121 7.886 5.217 6.654 6.258 4.916 5.421
GBM4 7.011 4.116 6.898 5.112 6.620 6.291 4.955 5.426
RF1 7.220 4.238 6.248 5.261 6.788 6.463 5.154 5.585
RF2 7.141 4.159 6.416 5.224 6.715 6.388 5.067 5.526
M3 6.720 3.988 5.524 4.987 6.341 6.089 4.760 5.101

Note: The smallest nRMSEs among all the models are in bold.
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small range, the confidence bands are narrow. When there is a significant
ramp, the uncertainty of the forecasts is increased and the bands tend to
be broader, as shown by hours 50!65. This further proves the necessity
of probabilistic forecasting.

The pinball loss values of the eight selected sites with different predic-
tive distributions are summarized in Table 7.4. The sum of pinball loss is
averaged over all quantiles from 1% to 99% and normalized by the maxi-
mum wind speed at each site. A lower pinball loss score indicates a better
probabilistic forecast. Table 7.4 shows that the M3-Laplace with pinball
loss optimization has the smallest pinball loss value at all locations. The
M3-Laplace model has reduced the pinball loss by up to 35% compared
to the M3 forecasts with other predictive distributions [i.e., Gaussian,
Gamma, and Noncentral T (nCT)]. Therefore the Laplace distribution is
finally chosen to generate probabilistic wind speed forecasts. Note that the
models of M3-Gaussian, M3-Gamma, and M3-Laplace perform similarly,

Figure 7.5 Multi-model probabilistic forecasts at the C2 site.

Table 7.4 Normalized averaged sum of pinball loss.
Method C1 C2 C3 C4 C5 C6 C7 C8

M3-Gaussian 1.74 1.26 1.44 1.36 1.86 1.69 1.28 1.59
M3-Gamma 1.74 1.26 1.44 1.36 1.87 1.69 1.27 1.58
M3-Laplace 1.72 1.25 1.43 1.35 1.85 1.63 1.26 1.57
M3-nCT 1.74 1.81 2.20 2.21 2.68 3.41 2.56 2.86

Note: The smallest normalized averaged sum of pinball loss at each location is in boldface.
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which indicates that the optimization can help achieve better accuracies
with different predictive distribution types.

7.2.3.2 Case study II: wind power forecasting based on cooperative
ensemble learning
The Q-learning enhanced deterministic forecasting algorithm is applied to
the wind power data collected from the WIND Toolkit with 1-hour reso-
lution, which includes seven sites (as shown in Table 7.5) with meteorolog-
ical information (e.g., wind direction, wind speed, air temperature, surface
air pressure, and density at hub height). For all the locations the first 3/4 of
the data is used as training data, in which the first 11/12 is used to train the
deterministic forecast models and the remaining 1/12 of the training data is
used to build the surrogate models of the optimal standard deviations and
weight parameters. The effectiveness of the forecasts is validated by the
remaining 1/4 of the data. The nMAE and nRMSE of 1HA (hour-ahead)
wind power forecasting are listed in Table 7.6. It is shown that the 1HA
nMAE and nRMSE from Q-learning model are in the ranges of 5%!8%
and 8%!13%, respectively. To show the effectiveness of the Q-learning
enhanced deterministic forecasting, the persistence method is used as a base-
line. It is seen from Table 7.6 that overall the Q-learning performs better
than the persistence method.

Table 7.5 Data summary of the selected seven WIND Toolkit sites.
Site ID (case notation) Latitude Longitude Capacity (MW) State

4816 (C1) 29.38 2 100.37 80 TX
8979 (C2) 31.53 2 95.62 53.3 TX
10069 (C3) 32.31 2 98.26 69 TX
10526 (C4) 32.44 2 100.55 59.4 TX
1342 (C5) 27.12 2 97.86 50 TX
2061 (C6) 27.95 2 97.40 100 TX
9572 (C7) 31.99 2 100.18 100 TX

Note: The case notations (C1!C7) are different from Sections 7.2.3.1 and 7.4.3.

Table 7.6 The normalized mean absolute error (nMAE) (%) and the normalized root
mean square error (nRMSE) [%] of 1HA forecasts.
Model Metric C1 C2 C3 C4 C5 C6 C7

Q-learning nMAE 6.63 6.85 6.70 6.74 6.67 5.38 7.76
nRMSE 10.55 10.93 11.04 10.66 9.93 8.37 11.93

Persistence nMAE 7.14 7.18 6.97 7.11 7.12 5.74 8.06
nRMSE 11.38 11.71 11.82 11.50 10.99 8.93 12.63
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To better visualize the ensemble forecasting model, Fig. 7.6 provides an
example of the deterministic forecasts along with the confidence intervals in
the form of interval plot at the C2 site from 2012-07-20 to 2012-07-24.
The colors of the intervals fade with the increasing confidence level, rang-
ing from 10% to 90% in a 10% increment. The intervals are symmetric
around the deterministic forecasting curves with a changing width. Fig. 7.6
shows that the prediction intervals of the ensemble forecasting model are
narrow, which show less uncertainty in the probabilistic forecasts.

The pinball loss values of the seven selected sites with different predic-
tive distributions are summarized in Table 7.7. Results show that the
Q-learning-based ensemble probabilistic forecasting method has reduced
the pinball loss by up to 16.1% compared with single probabilistic fore-
casting methods.

7.3 Machine learning!based control and
optimization

The powerful learning abilities also enable machine learning models
to solve complex control and optimization problems in power systems.

Figure 7.6 Cooperative ensemble probabilistic forecasts at the C2 site.

Table 7.7 Normalized averaged sum of pinball loss.
Method C1 C2 C3 C4 C5 C6 C7

Q-learning-cooperative 2.23 2.58 2.42 3.01 3.05 1.98 3.67
Q-learning without ensemble 2.46 2.83 2.67 3.38 3.42 2.30 3.94
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This section reviews the popular applications of machine learning in
power system control and optimization. Specifically, a network reconfigu-
ration optimization problem is solved by AI to demonstrate the “learn to
optimize” capability of machine learning models.

7.3.1 Prior research work
7.3.1.1 Machine learning!based control
Due to the increasing complexity and uncertainty brought by renewable
energy, distributed energy resources, and varying loads, it is of significant
importance for the electric power system to employ advanced control
strategies to keep the system working reliably and efficiently. Studies have
shown that machine learning!based control strategies are capable of
addressing the high-dimensional complex nonlinear control challenges,
and it could be more effective when properly combined together with
conventional mathematical approaches [59,60].

In terms of power system stability, extensive studies have employed
neural network to design power system stabilizer (PSS), and controller for
AGC or frequency control [61]. For instance, a self-tuning PSS based on
ANN was proposed by Segal et al. [62]. In this approach, ANN was
introduced for tuning the conventional PSS parameters in real time,
showing that the dynamic performance of the system with the ANN-
based PSS is robust over a wide range of loading conditions and equiva-
lent reactance. To improve the transient stability of power systems under
different operating conditions and parametric uncertainties, Senjyu and
Fujita [63] proposed an RNN stabilization controller for both automatic
voltage regulators and the governor, where the weights of the controller
are adjusted online. The proposed approach was applied to a single-
machine infinite-bus system and showed good damping characteristics
over a wide range of operating conditions. However, due to the com-
plexity of large-scale power systems, design of intelligent control-
lers!based ANN requires large training time and a large number of
neurons. These drawbacks motivated Chaturvedi et al. [64] to utilize gen-
eralized neurons (GNs) to develop a GN-based adaptive PSS. Given the
advantages of self-optimizing adaptive control and the quick response of
the GN, the proposed GN-based PSS can provide good damping of the
power system over a wide operating range and significantly improved the
dynamic performance. To stabilize the system after severe disturbances
and mitigate the oscillations afterward, Hadidi and Jeyasurya [65]
employed a Q-learning RL algorithm to develop a real-time closed-loop
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wide-area decentralized PSSs. The proposed algorithm proved that the
stability boundary of the system could be extended without losing any
generator or load area.

Due to the deviation between system load and power generation,
there exist frequency fluctuations in the power system, which requires a
supplementary control strategy to restore the system frequency to the
nominal values. For example, Zeynelgil et al. [66] proposed an ANN
controller with the backpropagation through time algorithm to study
AGC in a four-area interconnected power system. Chaturvedi et al. [67]
proposed a generalized NN-based decentralized controller to control the
frequency deviations in power systems. Other modified NN algorithms
include dynamic NN [68] and radial base function neural network [69].
Moreover, RL algorithms, that is, model-free Q-learning [70], hierar-
chically correlated equilibrium Q-learning [71], and deep distributed
recurrent Q-networks-action discovery [72], have also been employed to
develop frequency controllers for different conditions and purposes.

7.3.1.2 Machine learning!based optimization
For a data-driven nonlinear optimization problem, the first step in general
is to establish a mathematical regression model as the objective function in
terms of the design variables based on the experimental or collected data.
Since the physical or explicit relationships are unable to be observed
directly or remain unknown, the modeling process is referred to as black-
box. Machine learning (i.e., surrogate prediction model) approaches are
widely employed to solve the black-box problem, such as ANN, kriging/
Gaussian process (GP) regression, SVM, radial basis functions, and polyno-
mial response surface. By cross-validation the best appropriate models are
selected to build up the black-box model. The next step of the optimiza-
tion process is to apply a gradient-based or heuristic algorithm to solve
the problem.

The machine learning!based optimization has also been extensively
employed in power system studies. For example, Lucifredi et al. [73]
compared the kriging and ANN statistical modeling techniques with a
conventional linear multiple regression method for hydroelectric power
system maintenance prediction. Pan and Das [74] proposed to use a frac-
tional order control strategy for a microgrid, in which the controller para-
meters were tuned with a global optimization algorithm to meet system
performance specifications. In this research, a kriging-based surrogate
modeling technique integrated with GA was employed to alleviate the
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issue of expensive objective function evaluation for the optimization-based
controller tuning. Luh et al. [75] utilized augmented Lagrangian relaxation
to form and solve the market clearing prices subproblems by using a
surrogate-based optimization framework.

7.3.2 A Machine learning!based network reconfiguration
methodology
7.3.2.1 Literature review on network reconfiguration
Over the past decades, power grids have become more prone to be over-
loaded due to the disproportionate increasing of the load demand and
generation units (both dispatchable and nondispatchable units) [76].
Hence, the reconfiguration technique has been proposed to prevent over-
loading and provide an efficient power dispatch, especially in the emer-
gency conditions when the line current approaches its maximum
ampacity [77]. By definition the reconfiguration is the process of changing
the topology of the power network by some prelocated sectionalizing and
tie switches that can significantly improve the grid reliability [77], voltage
profile [78], line loss [79], and load balance [80]. Up to now, many heur-
istics and mathematical algorithms have been used to solve the reconfigur-
able power grids, for example, collective decision-based algorithm [77],
genetic algorithm [81], and mixed integer linear programming [77,78].
However, fast and effective reconfiguration response for electric service
restoration is one of the critical requirements, which can be achieved by
using state-of-the-art AI techniques to solve the reconfigurable power
grids. Therefore in this section, a deep learning model is applied to solve
the reconfigurable power grids.

In this section a new AI technique, known as the deep learning gated
recurrent unit (GRU) (DLGRU), is developed to solve the reconfigurable
power grids by learning the topological patterns of buses/lines with their
physical features. GRU was first designed in Ref. [82] to decrease the
complexity of long short-term memory (LSTM) and also enhance the
LSTM performance. Same as LSTM, GRU has gates that can control
the flow of the information from the input to the output. DLGRU can
potentially understand complex nonlinear topological characteristics of the
grid. Moreover, as will be shown in the result section, the total operation
cost of the power grid by utilizing the DLGRU technique to select opti-
mal switching of the reconfiguration is almost similar to conventional
optimization techniques. DLGRU can solve the reconfigurable power
grids in real time. However, conventional optimization techniques require

231Advanced machine learning applications to modern power systems



a certain amount of time interval to obtain the optimal results by running
the optimal power flow. More information regarding the GRU method
can be obtained in Ref. [82].

As mentioned, DLGRU is proposed to solve the reconfigurable power
grid with the following objective function and constraints through a
“learn to optimize” manner. Specifically, the main objective is to mini-
mize the total operation cost as:

min
X
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where Ci is the generation cost of the ith unit, PG
it is the generated active

power of the ith unit at time t, and SUit and SDit are the start-up and
shutdown costs of the ith unit at time t, respectively. Also, NRCS;kt and
λRCS represent the number of reconfigurable switching actions of kth
remote-control switch (RCS) at time t and reconfiguration switching
cost, respectively. Moreover, ΩDG, ΩT , and ΩS denote sets of the genera-
tion units, switches, and time, respectively. It should be noted that the
first and second terms of Eq. (7.19) represent the generation and reconfig-
uration switching costs of the grid, respectively. The proposed reconfigur-
able power grid includes some significant constraints in the following
paragraphs.

Power balance constraints: the active and reactive power balances of
each bus should be constrained as:
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where PL
nm;t and QL

nm;t are active and reactive power flow of line nm at
time t, respectively. PD

t and QD
t are the total active and reactive power

demand at time t, respectively. Rnm and Xnm are resistance and reactance
of line nm, respectively. Also, ILnm;t represents the current flow of distribu-
tion line nm at time t. It should be noted that ΩL denotes as the set of dis-
tribution lines. To apply the KVL to the distribution lines, the following
constraints should be considered:
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where n and m are defined as the bus indices, and ΩN denotes the set of
buses. Here, Vmt represents the voltage of bus m at time t, and ∆Vnmt is
the auxiliary variable that can be zero if line mn is switched on at time t.
Otherwise, it can be positive or negative, which depends on the differ-
ence between the voltages of the sending and receiving ends of line nm.
Finally, Znm denotes the impedance of line nm.

Generation units constraints: the active and reactive powers of genera-
tion units are constrained to a minimum and maximum capacity as:

PG
i Iit #PG

it #PG
i Iit’iAΩDG;’tAΩT (7.24)

QG
i Iit #QG

it #QG
i Iit’iAΩDG;’tAΩT (7.25)

where PG
i and PG

i present the minimum and maximum active power
capacity of the ith unit, respectively. Similarly, QG

i and QG
i present the

minimum and maximum active power capacity of the ith unit, respec-
tively. It should be noted that Iit is the on/off status of the ith unit at time
t, which can be zero (when unit is on) or one (when unit is off).

Bus voltage and angle limits: the voltage and angle of each bus are
limited as:

Vn #Vnt #Vn’nAΩN ;’tAΩT (7.26)

2π# θnt #π’nAΩN ;’tAΩT (7.27)

where Vn and Vn represent the minimum and maximum permissible volt-
age at bus n, respectively. Also, θnt denotes the angle of bus n at time t.

Reconfiguration constraints: the number of reconfigurable switching
per day is constrained as:

NRCS;k;t #NRCS’kAΩS;’tAΩT (7.28)
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where NRCS denotes the maximum permissible switching per day. Also,
the radiality of the network after each reconfiguration process is assured:

Nloop 5Nbranch 2Nbus1 1 (7.29)

where Nloop, Nbranch, and Nbus represent the total number of network
main loops, the number of branches, and the number of buses, respec-
tively. More details regarding the reconfigurable power grid as well as the
conventional methods for solving the problem can be found in Ref. [77].

Fig. 7.7 illustrates the proposed DLGRU to solve the reconfiguration
of the power systems. There are inputs (the load and the generation unit
powers), output (the switching numbers of the reconfigurations of the
power systems), and hidden GRU layers.

7.3.3 Network reconfiguration results
In this part, as shown in Fig. 7.8, a modified IEEE 33-bus test system is
selected to demonstrate the effectiveness of the proposed DLGRU for
finding the optimal switching of the reconfigurable power grids. The
model includes five tie switches (that are shown by the dotted lines), as
well as 33 sectionalized switches (that are shown as the solid lines).
Table 7.8 shows the characteristics of the generation units within the net-
work. It is worth noting that in any time interval, five switches should be
open to maintain the radiality of the network. The number of hidden
layers in the simulation results is 4, and there are 50 units in each layer.

The reconfiguration switching for both DLGRU and a conventional
benchmark method [77] for a 24-hour time horizon is compared in

Figure 7.7 DLGRU block diagram. DLGRU, Deep learning gated recurrent unit.
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Fig. 7.9. It is observed that there is a small difference between the optimal
result of the proposed DLGRU method and the conventional technique
for generating the switching’s of the lines to reconfigure the network.
Fig. 7.10 shows the contribution of the generation units for both
DLGRU and the conventional technique. The total operation cost of the
conventional method and the DLGRU method are $138,017.4 and
$138,132.2, respectively. Based on the simulation results, the operation
costs of the proposed machine learning technique and the conventional
technique are very close. However, the proposed DLGRU technique can
find the optimal switching in real time due to its fast convergence speed.

7.4 Advanced artificial intelligence and machine
learning applications to building occupancy
detection

The occupancy detection is beneficial to improve building energy
management and provide important information for demand response.

Figure 7.8 Single line diagram of the modified IEEE 33-bus system.

Table 7.8 Generation units features.
Generation type PG

i (kW) PG
i (kW) Ci ($/kWh) SU=SD ($)

WT1 0 25 1.073 0
WT2 0 25 1.073 0
FC 80 1000 0.294 0.95
MT1 100 1500 0.457 1.65
MT2 100 1500 0.457 1.65

FC, Fuel cell; MT1, microturbine 1; MT2, microturbine 2; WT1, wind turbine 1; WT2, wind
turbine 2.
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This section will first review the state-of-the-art of AI-based occupancy
detection. Then, a novel deep learning!based method is developed and
validated by publicly available dataset.

7.4.1 Prior research work
Based on the monitored objects, occupancy detection can be grouped
into intrusive and nonintrusive approaches. Intrusive sensors directly mea-
sure indoor environments, including motional, acoustic, or climatic para-
meters [83]. For example, Candanedo and Feldheim [84] compared
occupancy detection methods with different indoor climate feature com-
binations, among which the best model had over 99% accuracy.
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Figure 7.9 Reconfiguration switching of both the conventional and DLGRU techni-
ques. DLGRU, Deep learning gated recurrent unit.
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Figure 7.10 Generation units’ power. Left-hand side: conventional method; right-
hand side: DLGRU method. DLGRU, Deep learning gated recurrent unit.
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Surveillance videos were used for occupancy detection with 95.3%
accuracy in Ref. [85]. However, the intrusive occupancy detection is
challenging to extensively deploy due to the high installation cost, addi-
tional operation requirements (e.g., the illumination condition for cam-
eras), and privacy concerns. Therefore it motivated the development of
nonintrusive occupancy detection. The nonintrusive occupancy detection
relies on infrastructure sensors that monitor parameters such as Wi-Fi,
Bluetooth, or radio-frequency identification (RFID) [86!88]. For exam-
ple, Wang et al. [89] developed a Wi-Fi!based occupancy detection sys-
tem with 72.7% accuracy, which helped save 26.4% of energy in cooling
and ventilation demands. An RFID-based occupancy detection system
was able to track the stationary and mobile occupants with 88% and 62%
accuracy, respectively [87]. The nonintrusive methods have fewer privacy
issues; however, they still suffer from possibly unsatisfactory accuracies,
low infrastructure/device coverage, and extra occupant participation. The
limitations of both intrusive and nonintrusive sensors provide an opportu-
nity to infer building occupancy from AMI data. Nevertheless, AMI-
based occupancy detection is still limited compared to other sensor-based
detection.

Regarding the detection algorithms, data-driven machine learning
algorithms are widely applied, due to the growing penetration of sensors.
For example, a collection of machine learning models, including a deci-
sion tree (DT) model, a SVM, and a Bayes network, were compared in
Ref. [90], among which DT was the best model. In addition, SVM beat
the hidden Markov model (HMM) and the kNN model with 80% accu-
racy [91]. Moreover, Jin et al. [92] developed an RF model, which out-
performed HMM and SVM models with around 90% accuracy. In
contrast with the wide deployment of shallow machine learning algo-
rithms, deep learning is far from fully explored in occupancy detection
problems. A CNN is the first deep learning model developed for occu-
pancy detection, which provided occupancy information from indoor cli-
mate measurements with 95.42% accuracy [93]. Another deep learning
architecture utilized an autoencoder long-term recurrent convolutional
network, which identified the occupant activity from Wi-Fi!enabled
Internet of Things devices [94].

To bridge the gap in occupancy detection using AMI data, a deep
learning architecture is proposed in this section. The developed deep
learning architecture stacks a CNN and a LSTM network sequentially.
The developed CNN!LSTM architecture is expected to capture both
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spatial and contextual representations of the AMI data. The problem for-
mulation and methodology description are introduced in the rest of this
section. The developed model is then compared with state-of-the-art clas-
sifiers with a publicly available dataset.

7.4.2 The convolutional neural network!long short-term
memory deep learning architecture
7.4.2.1 Occupancy detection problem formulation
The objective of the building occupancy detection is to identify the real-
time occupancy condition, yARN 3 1, of a house from its AMI data,
XARN 3F , by using a stacking CNN model and an LSTM model [95]:

ŷ5FðX;WÞ5FR FC X;WCð Þ;WR
# $

(7.30)

where N and F are the sample size and dimension, respectively. y and ŷ
are actual and detected occupancy conditions, respectively. Fð'Þ, FCð'Þ,
and FRð'Þ indicate the developed CNN!LSTM model and its CNN
and LSTM components, respectively. W, WC, and WR are the para-
meters in the according models. With the condition of either occupied
or vacant at every timestamp, that is, yA0; 1, the occupancy detection is
a binary classification problem. Therefore the objective is to minimize
the loss function, which is based on the weighted binary cross-entropy,
given by:

J Wð Þ52
1
N

XN

n51

ωynlog ŷn
! "

1 12ωð Þ 12 ynð Þlog 12 ŷn
! "* +

(7.31)

where ω is the binary cross-entropy weight, defined as ω5PY ½y5 0jyAy%.

7.4.2.2 Convolutional neural network
With one or multiple feature learning blocks (FLBs) that consist of a con-
volutional layer and a max-pooling layer, CNN has powerful feature
learning ability. A convolutional layer (indexed by l) contains Dðl11Þ fil-
ters. A convolution operation is performed in each filter to construct a set
of feature maps as:

Zl 5Wl 3Xl 1bl (7.32)

where XlARHl 3Dl
is the convolutional layer input. ZARH ðl11Þ 3Dðl11Þ

,
WARH ðl11Þ 3Dl 3Dðl11Þ

, and bARH ðl11Þ 3Dðl11Þ
are the feature map matrix,
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layer parameter tensor, and bias matrix, respectively. Eq. (7.32) can be
expressed in detail as:

zlhðl11Þ;dðl11Þ 5
XHl

hl51

XDl

dl51

wl
dl ;hl ;dðl11Þ 3 xlhl ;dl 1 blhðl11Þ;dðl11Þ

h i
(7.33)

where (h, d) is a doublet index used to locate the element, x, in X.
To add nonlinearity to the network an element-wise rectified linear

unite (ReLU) is used to activate convolution outputs. The ReLU acti-
vation function is selected due to its computational efficiency, better
convergence, superior performance, and amelioration of vanishing gra-
dients compared to other functions [96]. The ReLU function is
expressed as:

zlhl ;dl 5maxð0; xlhl ;dl Þ (7.34)

A max-pooling layer is introduced as the last layer of an FLB to
achieve more translation invariance during the spatial representation learn-
ing. In this study a unified nonoverlapping moving window is used to
subsample the activated convoluted feature maps by a factor of 2. The
max-pooling layer is expressed as:

zlhðl11Þ;dl 5max xljxl : 5 xlhl :hl1 Hl= Hl11ð Þð Þ;dl
n o

(7.35)

7.4.2.3 Long short-term memory network
RNNs have been effectively applied in time series data analytics due to
its capability of capturing temporal correlations. The LSTM is a variant
of RNN, which avoids the vanishing gradient problem by gated regula-
tors. A typical LSTM block contains a memory cell, a forget gate, an
input gate, and an output gate, shown as Fig. 7.11. The three gates
have different functions, where the input gate determines the new
information stored in the memory, the forget gate decides the useless
old information to exclude, and the output gate exploits useful infor-
mation to output from the memory cell. The tensor operations in the
gates of a forward LSTM are expressed as:

f t 5σðWf ht21;Xt½ %1bf Þ (7.36)

it 5σðWi ht21;Xt½ %1biÞ (7.37)
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~ct 5 tanh Wc ht21;Xt½ %1bcð Þ (7.38)

ct 5 f t 3 ct211 it 3 ~ct (7.39)

ot 5σðWo ht21;Xt½ %1boÞ (7.40)

ht 5ot 3 tanhðctÞ (7.41)

where f , i, o, and c are the activation vectors of the forget, input, output
gates and the memory cell, respectively. Wf , Wi, Wc, and Wo are the
input matrices of gates or memory cell. bf , bi, bc, and bo are the corre-
sponding bias vectors. σð'Þ and tanhð'Þ are the sigmoid and hyperbolic
tangent activation functions, respectively. h is the hidden state and the
output of an LSTM hidden layer. ~c is the new state candidate vector.
The bracket is the concatenation operator. The nodal connections in an
LSTM cell are shown in Fig. 7.11.

One typical issue of most recurrent models is that they can only deal
with unidirectional dependencies in the data. To capture both forward
and backward dependencies in the AMI data a bidirectional LSTM
(BiLSTM) layer is included in the LSTM configuration. The nodal con-
nection and the tensor calculations in a BiLSTM are almost the same with
those in a unidirectional LSTM, except for the processing directions. The
bidirectional operations within a BiLSTM can be expressed as:

f t
-
5σ ~Wf ~ht21; ~Xt

h i
1~b f

' (
(7.42)

f t
’
5σ W

’
f h

’
t11;X

’
t

h i
1 b

’
f

' (
(7.43)

Figure 7.11 The LSTM building block. LSTM, Long short-term memory.
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where - and ’ denote the forward and backward operations, respectively.
Both ~ht and ’ht are generated and concatenated as the output of the
BiLSTM:

ht 5 ½h
-

t; h
’

t% (7.44)

7.4.2.4 The developed convolutional neural network!long short-term
memory architecture
The overall framework of the developed CNN!LSTM and the tensor
manipulations are shown in Fig. 7.12. The developed framework con-
tains three stacking components, which are a CNN network, an LSTM,
and a dense layer configuration. The AMI data is first convoluted
through the CNN network to generate spatial feature maps, as shown in
the bottom left dashed box. Inspired by the VGGNet, two FLBs with
four layers (i.e., two convolutional layers and two max-pooling layers)
are consisted in the CNN. There are 128 and 64 filters in the two FLBs,
respectively, which are used to extract the high-level abstract spatial fea-
tures from the AMI data.

The output of CNN configuration serves as the input to LSTM con-
figuration. To better capture the contextual patterns in the AMI data, we
increase the depth of the architecture by stacking three LSTM layers verti-
cally [97]. As shown in Fig. 7.12, the first LSTM layer extracts temporal
features from the previous CNN output and generates hidden states.
Then, a BiLSTM layer takes both forward and backward dependencies
into account, which is combined by the last LSTM layer. The developed
BiLSTM configuration is expected to learn hierarchical representations of
the convolutional time series of AMI data by operating hidden states at
different timescales.

The last component in the CNN!LSTM model is a dense layer con-
figuration with two fully connected layers and a final classification layer.
The output of LSTM is first flattened and fed into the first dense layer,
whose output is then fed into the second dense layer:

Zl 5Wl'Xl 1bl (7.45)

where all the inputs are transmitted to the output. The last layer is a classi-
fication layer with sigmoid activation function due to the mutual-
exclusive character of occupancy detection results:
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Zl 5
1

11 e2Wl 'Xl1bl
(7.46)

where l5 10. The occupancy condition could be determined by a apply-
ing a threshold to the last-layer output:

ŷ5Hðz2 thÞ (7.47)

where Hð'Þ is the Heaviside step function and th5 0:5 is the threshold
value.

7.4.3 Experiments
The developed CNN!LSTM model is tested with the largest publicly
available dataset with both AMI and occupancy data, that is, the
Electricity Consumption and Occupancy dataset [98]. The dataset has
summer and winter data of five houses with 1-second resolution (aggre-
gated from data with 1 Hz frequency). To avoid the noise and redun-
dancy, basic features were extracted from the AMI data [99]. The minute
data is flattened every hour to fit the CNN input format with W 5 60.
The quality-control with two criteria was applied to the dataset: (1) the
data length should be more than 900 and (2) both occupancy labels (i.e.,
occupied and vacant conditions) should be more than 10% of the total
occupancy data. As a result, four periods of data from three houses were
qualified and selected for case studies, which are summarized in Table 7.9.
The ratio of training, validation, and testing data is 3:1:1 for each case
study.

Hyperparameters of the developed CNN!LSTM model are deter-
mined by a trial-and-error manner with the training and validation dataset
and are listed in Table 7.9. The model has a total of 240,489 trainable
parameters (2.5 MB), which is a relatively small network, compared to
other famous deep learning architectures (e.g., the 16-layer VGGNet has
528 MB weights). Before being trained, parameters in each layer are

Table 7.9 Data summary of case studies.
Case notations Data dimension (N , W , F) Label (occupied/vacant)

C1 (935, 60, 30) 774/161
C2 (1103, 60, 30) 831/272
C3 (1079, 60, 24) 771/308
C4 (1367, 60, 29) 1044/323

Note: The case notations (C1!C4) are different from Sections 7.2.3.1 and 7.2.3.2.
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initialized with the Xavier method, where biases are initialized as zeros
and weights conform the Gaussian distribution [100]. Twenty percent of
neurons in the convolutional, LSTM, and dense layers are randomly
dropped to overcome the possible overfitting [101] (Table 7.10).

In this study, mini-batch stochastic gradient descent (SDG) is selected
as the optimizer to train the developed CNN!LSTM model. The SDG
minimizes the objective function JðW Þ in Eq. (7.31) by updating the
parameters in the opposite direction of its gradients. The complete data is
passed forward and backward through the network with 100 epochs. The
mini-batches (B :5 X;y½ %), with a batch size of 30, are randomly gener-
ated to shuffle the data order in each epoch. Gradients in each iteration
are calculated by averaging over the mini-batch. The learning rate sched-
uling is used to dampen training oscillations. Specifically, the training starts
with a learning rate of 0.1 and reduces the learning rate by 50% when a
plateau is reached for more than 10 epochs. To reduce the risk of conver-
gence to local minima, momentum is adopted in the training. The
weights are updated with the above techniques as:

Vi115 γVi 1 ηi11rWJðW;BÞ (7.48)

Wi115Wi2Vi11 (7.49)

Table 7.10 Hyperparameters of layers in the developed convolutional neural
network!long short-term memory (LSTM) model.
Layer Type Hyperparameter Trainable parameters

C1 Convolutional Input size: 603F 11,648
Filter size: 3
Filter number: 128

P1 Pooling Window size: 23 128 0
Stride: 2

C2 Convolutional Input size: 303 128 34,640
Filter size: 3
Filter number: 64

P2 Pooling Window size: 303 64 0
Stride: 2

L1 LSTM Output length: 50 23,000
L2 BiLSTM Output length: 200 120,800
L3 LSTM Output length: 50 50,200
D1 Dense Neurons: 100 5100
D2 Dense Neurons: 50 5050
S2 Classification Neurons: 1 51
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where i is the iteration index, V is the weight update matrix, γ5 0:9 is
the momentum, and η is the learning rate.

Six state-of-the-art machine learning!based classifiers are adopted to
compare with the developed CNN!LSTM method, which are a kNN
model, an SVM model with linear kernel, a GP model, an RF, a multi-
layer perceptron (MLP) classifier, and an adaptive boosting model
(AdaBoost). We believe the selected benchmarks are general and repre-
sentative, since they cover the nonparametric model (kNN), kernel-based
model (SVM), feedforward NN (MLP), and ensemble learning models
(RF and AdaBoost). The hyperparameters and parameters of these models
are determined empirically and listed in Table 7.11, including the number
of neighbors (n_neighbors) in kNN, the penalty weight (C) in SVM, the
covariance function (kernel) of the GP, the number of trees (n_estima-
tors), the maximum depth of the tree (max_depth), the number of features
for the best split (max_features) in RF, the number of hidden layer neu-
rons (neuron), activation function (activation), regularization penalty
(alpha) in MLP, and the maximum number of estimators (n_estimators),
and learning rate (learning_rate) in AdaBoost.

7.4.4 Results
The case studies are implemented in Python version 3.6 with the Keras,

Tensorflow, and scikit-learn libraries. The experiments are repeated 10
times to improve the reproducibility and consistency. All the experiments
are conducted on a workstation with an Intel Xeon(R) E5-2603 1.6 GHz
CPU and an NVIDIA TITAN V GPU. It took 11 minutes to train a
CNN!LSTM model with the experiment setups described above and
3.7 ms to detect the occupancy at a time step. The computational time is
applicable for real-time detection.

Table 7.11 Benchmark model hyperparameters and parameters.
Model Hyperparameters/parameters

kNN n_neighbors5 3
SVM C5 0.025
GP kernel5 1:03RBF 1:0ð Þ
RF n_estimators5 10, max_depth5 5, max_features5 1
MLP neuron5 100, activation5ReLU, alpha5 0.01
AdaBoost n_estimators5 50, learning_rate5 1.0

RF, random forest; GP, Gaussian process; kNN, k-nearest neighbor; SVM, support vector machine;
MLP, multilayer perceptron classifier.
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Being a typical binary classification problem, the occupancy detection
can be evaluated based on the binary confusion matrix, which consists of
four elements (as shown in Fig. 7.13): (1) true positive (TP), denoting the
count that a house is actually occupied and is detected occupied; (2) false
positive (FP), denoting the count that a house is actually vacant but is
detected occupied; (3) true negative (TN), denoting the count that a
house is actually vacant and is detected vacant; and (4) false negative,
denoting the count that a house is actually occupied but is detected
vacant. Based on the confusion matrix, five metrics are used to quantify
the overall performance of the classification models, which are accuracy
(ACC), sensitivity (SNS, also known as TP rate or recall), specificity
(SPC, also known as TN rate), precision (PRC), and F1 score (F1):

ACC5
TP1TN

TP1TN1 FP1 FN
(7.50)

SNS5
TP

TP1 FN
(7.51)
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Figure 7.13 A binary confusion matrix.
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where ACC indicates the overall accuracy of the detection. SNS measures
the proportion of the actual occupied conditions that are correctly
detected as such. SPC measures the proportion of the actual vacant condi-
tions that are correctly detected as such. PRC is the success probability of
detecting a correct occupied condition. F1 combines several metrics in
the imbalanced classification problem.

The occupancy detection accuracy is not only affected by the models,
but also related to the threshold shown in Eq. (7.47). Therefore in addi-
tion to the five overall metrics, another set of metrics are used to assess
the goodness of the classifiers over the entire operating range, which are
receiver operating characteristic (ROC) curve and the area under the
ROC curve (AUC). The former one is a curve of TP rate (SNS) against
FP rate (12 SPC) at various threshold settings, which can also be used to
determine the best th. A larger deviation between the ROC curve and
the diagonal line represents a better occupancy detection. The AUC value
is a comprehensive measurement of the ROC curve, where a larger AUC
value (maximum AUC5 1) indicates a better result.

The confusion matrix of one repeat is shown in Fig. 7.14. Results of
different models are located in different columns and matrices in different
rows indicate results of different cases. Even though the labels are highly
imbalanced in the whole dataset (as listed in Table 7.9), the testing data
labels could be balanced. For example, the vacant conditions and occu-
pied conditions ratio is 115:106 in the testing data of C. In addition, the
diversity of the four cases directly impacts the model performance. For
instance, kNN detects more FP than TN in C1 but vice versa in C2 and
C4. Different models perform distinctively in the same case. For example,
SVM, GP, and MLP accurately detect more occupied conditions; how-
ever, AdaBoost is more powerful in detecting the vacant conditions in
C2. We can conclude that both the dataset and the benchmarks are
diverse and general for the comparisons.

Based on confusion matrices, the evaluation metrics are calculated and
listed in Tables 7.12 and 7.13. From Table 7.12, it is observed that every
benchmark model has the chance to generate satisfactory occupancy
detection, since five out of six benchmark models outperform others in
some cases and based on some metrics. Nevertheless, none of the bench-
mark models can always beat others in all the four cases and all the
metrics. In addition, some benchmark models make extremely assertive
detections. For example, GP detects occupancy conditions with 100%
SNS but 0% SPC in C1, C3, and C4. Some benchmarks are not robust,
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which is revealed by the nonnegligible variance of the metrics over 10
experiment repeats, such as SPC of RF in C2 and SPC of MLP in C4.
In contrast, the developed CNN!LSTM model shows encouraging
accuracy in both the occupied and vacant conditions. More importantly,
the CNN!LSTM model is more accurate than benchmark models in all
the four cases, indicated by two overall evaluation metrics, ACC and
F1. The average ACC and F1 over the four cases and 10 experiment
repeats are 89.41% and 91.55%, respectively. The robustness of the
CNN!LSTM model is not only revealed in diverse cases but also
shown in 10 sets of experiments, which is supported by the relatively
small variances listed in Table 7.13.

To assess the model performance independent of the choice of th,
ROC and AUC are adopted. Specifically, a set of th values, ranging from
0 to 1, are used to determine ŷ and calculate TPR and FPR, as shown in
Fig. 7.15. The perfect classifier should have the ROC curve straight up
the vertical axis then along the horizontal axis. The classifier that ran-
domly generates occupancy detection results sits on the diagonal, and the
classifier that detects complete reverse results has a curve in the bottom
left part of the ROC space. Therefore the developed CNN!LSTM
model has better and more robust occupancy detection capability with
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different thresholds. The AUC values of all the experiments are shown in
Fig. 7.16, where the developed CNN!LSTM outperforms other models
consistently.

To dig into the reason of better occupancy detection performance of
the developed CNN!LSTM model, the detection probabilities and
results of the developed model are compared to those of the three best
benchmarks, that is, SVM, MLP, and AdaBoost. The outperformance of
the CNN!LSTM model is twofold. First, the developed model is more
accurate, revealed by the smaller deviations between detections and the
actual conditions. Actually, the CNN!LSTM model only misclassifies the
occupancy three times at three discrete hours, which is less harmful to the
demand response decisions. In contrast, all the three best competing mod-
els generate more and longer period wrong detections. The second advan-
tage is that the CNN!LSTM model is more confident in the detection it

Table 7.12 Mean of evaluation metrics (%) of the 10 occupancy detection
experiment repeats.
Case Metric Models

CNN!LSTM kNN SVM GP RF NN AdaBoost

C1 ACC 91.34 71.66 85.03 85.56 85.51 85.29 87.70
SNS 93.13 70.00 99.38 100.00 99.94 91.06 96.88
SPC 80.74 81.48 0.00 0.00 0.00 51.11 33.33
PRC 96.63 95.73 85.48 85.56 85.55 91.74 89.60
F1 94.84 80.87 91.91 92.22 92.19 91.37 93.09

C2 ACC 85.25 71.04 61.99 70.59 80.81 65.43 81.90
SNS 82.36 90.57 98.11 99.06 89.62 94.43 65.09
SPC 87.91 53.04 28.70 44.35 72.70 38.70 97.39
PRC 86.79 64.00 55.91 62.13 76.69 59.08 95.83
F1 84.21 75.00 71.23 76.36 82.12 72.48 77.53

C3 ACC 98.47 84.26 86.57 73.61 84.26 91.76 90.74
SNS 99.12 86.79 92.45 100.00 95.66 92.45 92.58
SPC 96.67 77.19 70.18 0.00 52.46 89.82 85.61
PRC 98.81 91.39 89.63 73.61 85.06 96.23 94.72
F1 98.96 89.03 91.02 84.80 89.99 94.29 93.64

C4 ACC 82.56 67.40 72.16 72.89 73.15 80.04 80.22
SNS 89.50 85.93 96.98 100.00 99.70 95.33 91.96
SPC 63.92 17.57 5.41 0.00 1.76 38.92 48.65
PRC 87.21 73.71 73.38 72.89 73.19 81.02 82.81
F1 88.20 79.35 83.55 84.32 84.41 87.48 87.14

ACC, Accuracy; CNN, convolutional neural network; GP, Gaussian process; kNN, k-nearest
neighbor; LSTM, long short-term memory; PRC, precision; RF, random forest; SNS, sensitivity;
SPC, specificity; SVM, support vector machine.
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makes. This is illustrated by the darker color of the classification probabili-
ties, compared to other models, such as AdaBoost. Therefore the outper-
formance of the developed model is well-explained (Fig. 7.17).

Table 7.13 Standard deviation evaluation metrics (%) of the 10 occupancy detection
experiment repeats.
Case Metric CNN!LSTM kNN SVM GP RF NN AdaBoost

C1 ACC 0.49 0.00 0.00 0.00 0.17 0.85 0.00
SNS 0.59 0.00 0.00 0.00 0.20 2.52 0.00
SPC 3.40 0.00 0.00 0.00 0.00 9.85 0.00
PRC 0.56 0.00 0.00 0.00 0.02 1.34 0.00
F1 0.30 0.00 0.00 0.00 0.10 0.66 0.00

C2 ACC 1.09 0.00 0.00 0.00 6.80 4.50 0.00
SNS 6.55 0.00 0.00 0.00 4.15 4.41 0.00
SPC 6.18 0.00 0.00 0.00 15.85 12.50 0.00
PRC 4.40 0.00 0.00 0.00 9.92 4.11 0.00
F1 1.51 0.00 0.00 0.00 4.67 1.81 0.00

C3 ACC 0.38 0.00 0.00 0.00 4.04 0.57 1.95
SNS 0.44 0.00 0.00 0.00 1.98 0.89 1.59
SPC 1.29 0.00 0.00 0.00 15.24 3.86 2.96
PRC 0.45 0.00 0.00 0.00 3.98 1.33 1.11
F1 0.26 0.00 0.00 0.00 2.32 0.35 1.35

C4 ACC 1.58 0.00 0.00 0.00 0.49 2.56 0.00
SNS 3.95 0.00 0.00 0.00 0.35 3.03 0.00
SPC 11.82 0.00 0.00 0.00 2.30 16.68 0.00
PRC 3.66 0.00 0.00 0.00 0.42 3.86 0.00
F1 1.07 0.00 0.00 0.00 0.23 1.15 0.00

ACC, Accuracy; CNN, convolutional neural network; GP, Gaussian process; kNN, k-nearest
neighbor; LSTM, long short-term memory; PRC, precision; RF, random forest; SNS, sensitivity;
SPC, specificity; SVM, support vector machine.
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Figure 7.15 ROC curves in randomly selected experiments. ROC, Receiver operating
characteristic.
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7.5 Conclusion

AI has been witnessed to have significant impacts on power system
operations. Large amounts of data are being collected by smart grid
devices, such as the AMIs and the PMUs, which facilitate the wide appli-
cations of AI techniques to power systems. In this section, two emerging
machine learning subfields were introduced: ensemble learning and deep
learning. Three use cases were used to demonstrate their applications in
power systems. Specifically, competitive and cooperative ensemble learn-
ing models were developed to provide short-term wind forecasts. Both
methods included state-of-the-art machine learning models, for example,
ANNs, SVR models, GBMs, RF models, and Q-learning models. In
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Figure 7.16 The AUC statistics of the 10 experiment repeats. AUC, Area under ROC
curve.
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addition, a DLGRU was used to solve a network reconfiguration problem
through a “learn to optimize” manner. In the last application case, a deep
learning configuration with a CNN and a LSTM network was developed
to detect real-time occupancy conditions in smart buildings. Three sets of
case studies based on publicly available datasets showed that the developed
ensemble learning methodologies and deep learning methods outper-
formed the corresponding benchmarks. The accurate forecasts and detec-
tion are valuable to renewable integration, power system reliability, and
building integration into the smart grid.
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