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A B S T R A C T   

Due to the high nonlinearity of AC optimal power flow (OPF), numerous efforts have been made in recent de-
cades to find efficient methods. Machine learning (ML) has proven to significantly reduce the computational 
costs in many real-world problems. Thus, this paper develops a learning-augmented method for solving AC OPF, 
which integrates both power network equations and ML to yield near-optimal solutions. More specifically, ML 
models are developed to first predict bus voltage magnitudes and angles. Then, physics-based network equations 
are employed to calculate the power injection at different buses. Three ML algorithms, i.e., random forest, multi- 
target decision tree, and extreme learning machine, are explored and compared. To evaluate the efficiency of the 
proposed learning-augmented AC OPF solver, the MATPOWER Interior Point Solver is adopted as a baseline. 
Case studies on both 500-bus and 4918-bus test networks show that the proposed learning-augmented method 
has reduced the computational time by 15–100 times depending on the network size with a minimal loss in 
optimality.   

1. Introduction 

Under present deregulated electricity market structures, system op-
erators require precise dispatch and market decisions to better utilize 
available resources and preserve interests of all market stakeholders [1]. 
Independent System Operators (ISOs) execute optimal power flow (OPF) 
algorithms to obtain their dispatch decisions frequently (e.g., California 
ISO runs OPF every 5-min [2]). Due to the uncertain and stochastic 
nature of renewable resources, OPF decision parameters need to be 
determined promptly to avoid their curtailments. It has been reported 
that alone in the U.S., a 5% increase in market efficiency with better OPF 
solvers, can save approximately 6 billion dollars per year [3]. However, 
AC OPF is still a challenging problem, due to its nonlinearity, especially 
for large networks. Many approaches to solve the full AC-OPF have been 
proposed in recent decades, including linear relaxation [4,5], convex 
relaxation [6], and heuristic algorithms [7–9]. 

1.1. Review of machine learning approaches to OPF 

Machine learning (ML) has demonstrated to significantly improve 
the computational efficiency of many complex problems, including OPF 
[10–13]. The utilization of ML approaches to solve OPF can be broadly 
divided into two categories: (1) end-to-end approaches that are purely 
based on ML, and (2) hybrid approaches of ML and physics-based 

solvers. A number of end-to-end ML methods have been developed in 
the literature to solve OPF. For example, a collection of supervised 
learning algorithms, including Gaussian naive Bayes, logistic regression, 
decision tree, random forest, extra-tree, and neural network, were 
adopted to only solve the objective function value of OPF [14]. In 
Ref. [15], system real power load and costs of generation were used to 
predict generators’ real power output and the voltage of P-V buses using 
several ML models. The prediction of active OPF constraints was studied 
in [10–12,16,17] to improve the computational efficiency of traditional 
physics-based solvers. An end-to-end generator setting prediction was 
performed in [12] through a constraints violation penalty-incorporated 
neural network approach. A deep learning technique was exploited in 
[18] to solve the real power generation in DC OPF, where post- 
processing was performed to ensure that the generation values were 
within bounds. To reduce the feasibility gap, the loss function of a deep 
neural network was customized to the lagrangian of the AC OPF problem 
in [19]. A distributed reinforcement learning-based approach was pro-
posed in [20], where real and reactive power losses were minimized 
through a feedback scheme. 

Hybrid approaches were also attempted in the literature to reduce 
the computational cost, focusing primarily on yielding better warm-start 
points for physics-based solvers. For example, a neural network model 
was used in Ref. [21] to represent the system security boundary and 
generate new constraints in the form of a differentiable mapping 
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function, which was then solved by a physics-based OPF solver. A multi- 
input multi-output random forest regression method was used in [22] to 
predict the real power set-point of generators and bus voltage magni-
tudes, which were then passed to a physics-based OPF solver. An arti-
ficial neural network model was used in [23] to only solve generator 
voltage and real power outputs, which were then passed to a physics- 
based solver to solve the reactive power. 

1.2. Research motivation and objective 

The main drawback of using ML to obtain direct end-to-end solutions 
is that there might exist a large number of violations with those physical 
law-related constraints. It is noted in the literature that a majority of 
end-to-end ML-based OPF methods only solve real power generation of 
generators and bus voltage magnitudes, which may lead to infeasible 
solutions. This is due to the fact that both the voltage magnitude and 
angle determine the amount of power flow in branches, and the power 
losses of lines are also dependent on those voltage parameters. Thus the 
real power generation obtained from end-to-end ML models may not be 
useful, since they may contradict the injection values calculated from 
predicted voltage parameters based on network equations. While hybrid 
approaches can ensure the convergence, physics-based solvers are still 
required. Thus the computational efficiency improvement of hybrid 
approaches is still limited. 

To address the challenges in both ML-based end-to-end and hybrid 
approaches, this paper develops a learning-augmented approach to 
solve AC OPF, which does not rely on any physics-based OPF solvers. To 
address the issues of physical law related constraints violation, the 
proposed model solves the voltage magnitudes and angles instead of real 
or reactive power generation. The generated voltage magnitude and 
angles won’t contradict each other as per the physical laws, which 
guarantees the feasibility of the OPF solutions. Once the voltage mag-
nitudes and angles are obtained, physics-based power flow equations are 
applied to calculate other operating variables, such as real power gen-
eration, shunt susceptances, etc. By integrating the physical laws with 
the computationally efficient ML-based voltage parameter prediction 
scheme, the proposed approach is expected to (i) reduce the 
input–output mapping dimension for the ML algorithm and thus reduce 
the computational expense; (ii) ensure the solutions’ compliance with 
physical laws without any physics-based OPF solvers. 

In addition, the proposed method doesn’t rely on conventional OPF 
solvers, which can significantly reduce the computational time, espe-
cially for large-size networks, e.g., the U.S. eastern-interconnection 
(62,000 bus and 80,000 branch system [24]), or scenarios where a 
large number of OPF cases need to be solved within a short time frame, 
e.g., contingency analysis, real-time economic dispatch with stochastic 
renewable generation, etc. AC OPF is usually considered as a non- 
deterministic polynomial (NP)-hard problem, and improving its 
computational efficiency has always been an appealing task [19,25–28]. 
Due to the NP-hard nature of AC OPF, the solution cannot be guaranteed 
to be obtained in polynomial time [25], which forces the system oper-
ators to resort to a linearized version of AC OPF (i.e., DC OPF) for 
dispatch decisions and market clearing signals [14,27]. To address this 
challenge, the proposed method could be an alternative solution for real- 
time dispatch decision and spot market clearing. 

The rest of the paper is organized as follows. In Section 2, the pro-
posed learning-augmented approach for AC OPF is described along with 
the ML model development. In Section 3, the experimental setup is 
described. Section 4 presents detailed results and discussion of case 
studies. Section 5 concludes the paper and briefly discusses potential 
future work. 

2. Methodology 

2.1. The OPF problem 

The OPF problem deals with determining the optimal dispatch of 
generators to minimize the cost of generation while satisfying the en-
gineering and physical constraints. In this paper, the OPF formulation of 
the ‘Grid Optimization (GO)’ competition [29] is adopted and modified. 
The ‘GO’ competition formulation contains controllable shunt related 
security constraints, in addition to commonly considered constraints in 
the literature. Thus, the AC OPF problem in this paper is formulated as 
follows. 

min
v,θ,p,q,bcs

∑G

g=1
cg

s.t.
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(1)  

where $ , ℰ, ℬ, and % are the set of bus, branch (both line and trans-
former), switched shunt, and generator, respectively. The parameter cg 

represents the generation cost of generator g, which is calculated from 
an individual piece-wise linear cost function. The parameters vi and θi 
are the voltage magnitude and angle at bus i, respectively. Generator 
active and reactive power is denoted by pg and qg, respectively. The 
shunt susceptance is denoted by bcs and limited by their MVAR limits. 
The parameters pi

inj and qi
inj stand for the real and reactive power in-

jection at bus i, whereas pi
d and qi

d are the real and reactive power de-
mand at that bus, respectively. The net real and reactive power injection 
pi,j and qi,j to a branch can be represented by the difference between 
injection and demand at the connected buses i and j. For a branch 
connecting bus i and j, the power flow si,j is limited by its rating si,j. A 
feasible solution ensures that these constraints are not violated. The 
constraints derived from physical laws like Ohm’s law and Kirchhoff’s 
law (e.g., equality), have zero tolerance for violation. The constraints 
that are related to engineering practice could be relaxed at times such as, 
during contingency events. In this work, for data generation purpose, 
the branch flow limit is changed to a soft-limit when the case is not 
solvable by treating the branch flow-limit as a hard-limit. This constraint 
relaxation allows for a larger phase variation in required cases. In a 
mathematical formulation, this constraint relaxation can be described 
as: 

−si,j − λ⩽si,j⩽si,j + λ (2)  

where λ is a slack variable that allows a headroom for the solver to 
enhance its feasible solution space. 

2.2. Learning-augmented OPF methodology 

Figure 1 shows the overall framework of the proposed learning- 
augmented approach for solving AC OPF. With given load conditions 
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(i.e., real and reactive power load), corresponding voltage magnitudes 
and angles are solved using a conventional OPF solver (i.e., The MAT-
POWER Interior Point Solver (MIPS) in this paper), which generates a 
large dataset for ML model training. To successfully train the machine 
learning model, a large training dataset (generated from offline 
optimization-based OPF solutions) are needed. The proposed method 
could be used in a number of scenarios when real-time OPF solutions are 
needed, such as (i) real-time dispatch decision under contingencies, 
disasters, or cyber attacks; (ii) potential future power networks with 
high penetrations of uncertain renewable generation. In addition, dur-
ing normal conditions, the learning-augmented solution could also be 
used as a warm-start for the consecutive solution, since the system states 
vary little within a short time frame without major disruption [19]. Thus 
in the model training process, the training data (i.e., generated input 
load data and output OPF solution from the conventional MIPS solver) is 
necessary to make the proposed learning-augmented model be aware of 
the system’s typical parameter and decision variable setting. The 
generated dataset is split into training, validation, and testing datasets. 
A set of state-of-the-art ML regression models are trained based on the 
training dataset and optimized using the validation dataset. The trained 
models are later used for making voltage magnitude and angle pre-
dictions. Since the inputs to the proposed learning-augmented model are 
bus loads and the outputs are voltage magnitudes and angles, this 
mapping operator is written as: 

Ω : Pd × Qd⟶- × Θ (3)  

where Pd and Qd are the sets for real and reactive bus load, respectively; 
- and Θ are the sets for bus voltage magnitude and angle, respectively. 
This mapping function Ω is approximated by an ML model. 

After solving the voltage parameters, network equations are applied 
to determine the current injection Iinj at different buses, based on a bus 
admittance matrix Y that is usually calculated from given network 
parameters. 

Iinj = Y × v (4)  

Once current injections are known, the apparent power S is calculated 
from the product of bus voltage and current conjugate. 

S = v × Iinj* (5)  

Finally, the complex bus power injection Sinj is calculated by subtracting 
the bus power demand Sd from the apparent power. This is inspired from 
the repetitive adjustment of system voltage parameters to produce a zero 
mismatch in complex bus power injection, which is typically used in 
physics-based power flow algorithms. 

Sinj = S− Sd (6)  

The real part of the complex bus power injection at the generator bus is 
then fed into the piece-wise linear cost functions of individual genera-
tors to calculate the overall cost of production. The learning-augmented 
OPF solver, i.e., the integration of ML and network equations, ensures 
that the constraints related to physical laws are satisfied. Regarding the 
cost or objective function value, the learning-augmented model pro-
duces the OPF solution based on the trained model. Since the training is 
performed with the generated OPF solutions that minimize the cost, the 
learning-augmented solver is also expected to minimize the cost. 

2.3. ML models 

The developed ML models for solving AC OPF should have a multi-
–input–multi–output (MIMO) mapping capability, with a high compu-
tational speed and accuracy. Most of the existing ML algorithms don’t 
have the MIMO handling capability and have to rely on ensemble 
techniques to accomplish MIMO tasks, especially for regression prob-
lems. However, the computational efficiency may get significantly 
affected by ensemble methods, and the performance may deteriorate 
through the ensembling process [30,31]. Tree-based and nearest 
neighbor algorithms have shown to perform well in multi-target map-
ping. However, nearest neighbor methods are notoriously slow [25] and 
thus unsuitable. Thus, two tree-based ML algorithms are adopted and 
compared to perform the learning task, which are Random Forest (RF) 
and multi-target Decision Tree (DT). An extremely fast single layer feed- 
forward neural network (SLFN), called the Extreme Learning Machine 
(ELM), is also adopted for comparison, due to its automatic feature se-
lection capability and fast training. Several deep learning algorithms, 
such as the deep feed-forward neural network and deep 1-dimensional 
convolutional neural network, were also tested due to their automatic 
feature selection capability. However, the accuracies of the tested deep 
learning algorithms are not satisfactory and their results are not re-
ported here. 

2.3.1. Random forest model 
RF has a superior multi-input multi-output mapping capability thus 

perfectly suits the purpose of estimating multiple AC OPF variables. RF 
is a combination of bagging [32] and random feature subspacing [33], 
both of which are ensemble techniques trained with a particular pre-
diction scheme [34]. There exist a collection of decision trees in an RF 
model to make their predictions separately. Then, these predictions are 
averaged to minimize the error. The trees are base learners and near- 
independent, which reduces the risk of biased decision or overfitting. 

During the training of the RF model, bootstrap samples are drawn 
from the input dataset (i.e., the system load Pd and Qd), and for each 
sample, an unpruned regression tree is grown. At every node, input 
variables are sampled randomly and splitting is performed in the vari-
able space. The best split is ensured by minimizing the residual sum of 
squares (RSS), given by: 

RSS =
∑L

l=1

∑

m∈Rl

(
ym − ŷRl

)2 (7)  

where, ŷRl 
is the average of the observations in the lth non-overlapping 

region, L is the total number of regions of the predictor space, and ym 
is the predicted value. The training process continues until the number 
of grown trees is equal to a predefined number. The model outputs (i.e., 
v and θ) are generated by aggregating the prediction of all grown trees. 
Here, the average solution of all trees is considered as the final solution, 
which ensures zero random prediction errors of the trees (forest) and 
preserves the true relationship between predictors and responses. The 
pseudocode for RF-based OPF is described in Algorithm 1. Unlike other 
ML algorithms, cross-validation is not required in RF since an out-of-bag 

Fig. 1. The proposed learning-augmented AC OPF algorithm. The shaded re-
gion represents the ML domain. 
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(OOB) error estimation is used during the tree construction [32]. 

Algorithm 1. RF-based OPF Algorithm  
Require: RF training and test dataset: (Xtr,Ytr), (Xtest ,Ytest)  

RF model parameter (No. of trees B) 
Ensure: OPF variables are determined 
1: RandomForest((Xtr,Ytr),B)  
2: Initialize Q = ϕ  
3: for e = 1 to B do  
4: Ie ← a bootstrap sample from training set  
5: qe ← get the learned tree from the sample with a cutpoint to minimize Eq. (7)  
6: Q ← Q ∪ qe  

7: end for 
8: return Q 
9: Predict with Q on Xtest to get v and θ  
10: Determine other OPF variables by using Eqs. ()()()(4)–(6)   

2.3.2. Multi-target decision tree 
Multi-target DT is capable of doing multi-target regression at one 

time by a single tree instead of building one for each target variable. The 
multi-target DT can exploit the benefits of correlation among input 
variables. Compared to a single target regression tree, multi-target DT is 
significantly smaller and requires less time to train. Unlike storing a 
single numeric value at each leaf node, each multi-target DT leaf stores a 
vector. The learning begins at the root node of a single DT with a set of 
training data, and the set is recursively partitioned into smaller subsets 
by a heuristic function [35]. Akin to the single-target tree, a heuristic 
function selects the input variable set at each internal node of a multi- 
target DT on the basis of intra-cluster variation N

∑T
t=1var[yt ], where T 

is the number of target variables, N is the number of samples, and var[yt ]
is the variance of the target variable yt in the cluster [35]. A smaller 
value of intra-subset variance represents a higher accuracy in prediction. 
The partitioning process stops when a predefined stop criterion (i.e., the 
maximum tree depth in this paper [36]) is satisfied. 

Algorithm 2. DT-based OPF Algorithm  
Require 

DT training and test dataset: (Xtr,Ytr), (Xtest ,Ytest)  
Ensure: OPF variables are determined 
1: DT((Xtr,Ytr))  
2: Initialize tree = ϕ  
3: Initialize k cluster set Ck = (Xtr,k,Ytr,k)
4: C* ← get the best cluster set by minimizing intra-cluster variance  
5: y* ← get the average value of targets at leaf node  
6: if y* = ϕ then  
7: for each C*

k ∈ C* do  
8: tree ← DT((Xtrk,Ytrk))  
9: end for 
10: return node(y*, tree)
11: else 
12: return leaf(y*)
13: end if 
14: return tree 
15: Predict with tree on Xtest to get v and θ  
16: Determine other OPF variables by using Eqs. ()()()(4)–(6)  

Then, the target variables are calculated and averaged for each leaf 
node to obtain the final prediction. An averaging takes place at the leaf 
node to get the prediction for each target variable for the considered 
observation. The pseudocode for DT-based OPF is illustrated in Algo-
rithm 2. 

2.3.3. Extreme learning machine 
Since both load and generation situations change rapidly in power 

systems, the learning speed is critically important when solving OPF, 
especially under extreme conditions such as contingencies. ELM has 
shown to be capable of reducing both the training and prediction time 
significantly, compared to classic ML algorithms. The low computa-
tional efficiency of classic ML algorithms is mainly attributed to: i) slow 

gradient-based learning algorithms, and ii) the hectic iterative tuning of 
model parameters to optimize their performance. ELM addresses the 
aforementioned challenges by randomly choosing input weights and 
analytically determining the output weights. The input weights and 
hidden layer biases are assigned at the start of the learning process. The 
hidden layer output matrix (H) stays unaltered if the number of hidden 
nodes is equal to the number of distinct input samples. If an exception 
occurs, the output weights are calculated by using the Moore–Penrose 
generalized inverse of matrix H instead of using H directly [37]. For a 
single target variable, an ELM with Ñ hidden neurons is described as 
follows. 

f
Ñ

(
x
)
=
∑̃N

i=1
βihi
(
x
)
= h
(
x
)
β (8)  

where x is the input, β is the output weight vector, and h(x) is the hidden 
layer output vector. For a multi-target regression problem, f

Ñ 
is an M ×

Ñ matrix where M is the number of target variables. The cost function E 
is minimized with N samples. 

E =
∑N

j=1

(
∑̃N

i=1
βig
(

wi⋅xj + bi

)
− yj

)2

= ||Hβ− y||2 (9)  

where g(⋅) is an activation function that is assumed to be infinitely 
differentiable. The parameter wi is a weight vector connecting the input 
node and the ith hidden nodes. The parameter bi is a threshold of the ith 

hidden node. wi⋅xj denotes the inner product between wi and xj, yj rep-
resents a target vector, and y represents a target matrix. The pseudocode 
for ELM-based OPF is illustrated in Algorithm 3. 

Algorithm 3. ELM-based OPF Algorithm   
Require 

ELM training and test dataset: (Xtr,Ytr), (Xtest ,Ytest)  
ELM model parameters (No. of hidden neuron Ñ, activation function g(x))  
Ensure: OPF variables are determined 
1: ELM((Xtr,Ytr), Ñ)  
2: Initialize β = ϕ, and H = ϕ  
3: for j = 1 to N do 
4: for i = 1 to Ñ do  
5: Initialize wi and bi  

6: hi(x) ← calculate hi(x) by evaluating each g(x)  
7: βi ← calculate βi  
8: end for 
9: return h(xj),β  
10: H ← H ∪ h(xj)
11: end for 
12: Update β ← β by Eq. (9)  
13: return H,β  
14: Predict on (Xtest) to get v and θ  
15: Determine other OPF variables by using Eqs. ()()()(4)–(6)   

3. Case study 

To evaluate the efficiency of the proposed learning-augmented 
approach for OPF, two transmission networks at different scales (i.e., 
500-bus and 4918-bus as summarized in Table 1) are selected. The 

Table 1 
500-bus and 4918-bus test networks selected from the GO competition.  

Network No. of 
generators 

No. of switched 
shunt 

No. of load 
bus 

No. of 
branch 

500-bus 90 17 200 599 
4918- 

bus 
1,340 486 2,558 6,727  
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network parameters are collected from the ‘GO’ competition repository 
[38]. 

3.1. Dataset generation 

3.1.1. Input load dataset generation 
The machine learning model training requires a significant amount 

of data. Generating training data from conventional optimization-based 
method has been a common practice in the literature [19,22,23,39–41]. 
In [22,23], IEEE-14 bus, 57-bus, 118-bus, and 300-bus systems were 
solved by MATPOWER for uniformly distributed random perturbations 
of the load at each bus. In addition, [19] also solved EPRI 39-bus, IEEE 
RTS 73-bus, RTE pegase 89-bus, IEEE dtc 162-bus, and edin 189-bus 
systems from the NESTA library [42] by introducing a similar load 
variation technique. In this work, to generate a sufficient amount of 
training data, the given base case of load distribution in the ‘GO’ 
competition is used as a benchmark. Sample load profiles are generated 
based on the hourly load profiles of the Electric Reliability Council of 
Texas (ERCOT) system from January 01, 2004 to July 15, 2009 [43]. 
The generated load profiles can represent the load variation character-
istics (e.g., daily, weekly, monthly, and seasonal) in real power systems. 

Since the test case load and ERCOT’s load are at different magnitude 
scales, the ERCOT hourly load profile is scaled down for the 500-bus test 
network and scaled up for the 4918-bus test network. Regarding the load 
distribution, two scenarios are considered in this paper:  

• Scenario 1: The scaled bus load profiles are used to test the learning- 
augmented OPF method.  

• Scenario 2: The scaled bus load is added by Gaussian noises with a 
zero mean and 5% standard deviation. 

The load profile generation method ensures the load variability in 
real networks. Due to the similarity of load profiles in consecutive years, 
there are a large number of repeating load values in the training dataset 
that may cause overfitting issues. Adding Gaussian noises in Scenario 2 
seeks to solve the overfitting challenge. 

3.1.2. OPF solution dataset generation 
Based on the aforementioned load data generation scenarios, 10,000 

and 40,000 load samples are produced for the 500-bus and the 4918-bus 
test networks, respectively. The generated load profiles are then fed into 
MATPOWER [44] to get the AC OPF solution. Since controllable shunts 
cannot be modeled directly in MATPOWER, they are modeled as 
controllable synchronous condensers. The MATPOWER ‘MIPS’ is adop-
ted to solve the AC OPF due to its superior speed and accuracy. Real and 
reactive power losses for each scenario are also recorded for further 
checking of the nodal power mismatch. To reduce the burden on 
input–output mapping, voltage angles are converted to radians, which 
helps to improve the prediction accuracy. 

3.2. Data cleaning 

The developed learning-augmented OPF algorithm does not have the 
capability to discriminate between feasible and infeasible cases. Among 
all the load inputs, not all of them could provide feasible solution and 
only the solutions of converged cases are used for ML model training and 
testing. Cases where the MIPS solver doesn’t produce a feasible solution 
are also excluded. To further reduce the mapping task, the angle of slack 
bus is excluded as it is taken as a reference when solving OPF. For some 
instances, the demand of some load buses remains constant, which does 
not affect the ML performance and are thus excluded from the input 
variable set. 

3.3. Hyperparameter tuning 

Though each ML model provides a wide range of hyperparameters, 

not all of them affect the model performance equally under certain 
experimental setups. Thus in the case study, the selection ranges for 
hyperparameters are narrowed down by considering practical con-
straints. A representative part of the whole dataset is selected for opti-
mizing hyperparameter settings. 

Fig. 2 shows the hourly load pattern of ERCOT and a yearly pattern is 
observed. Thus, the first 8,760 data points are selected for hyper-
parameter tuning, which are split in a 80%-20% ratio for training and 
validation. The parameter settings that produce the most consistency 
between training and validation are selected. 

3.3.1. RF model 
For the RF model, the following parameter settings are explored and 

compared, including the number of features to consider 
(max_features=[0.3,0.4,0.5]), the maximum tree depth 
(max_depth=[10,20,30]), the minimum number of samples required 
at each leaf node (min_samples_leaf=[2,3,4]), the number of trees 
(n_estimators=[20,40,60,80,100]), and the minimum number 
of samples required to split an internal node (min_samples_split=
[2,5,10]). It is found that there exists an asymptotic relationship be-
tween the number of trees and prediction accuracy. The effects of other 
hyperparameters on the model performance are not readily conceivable 
and thus require empirical evaluation. Table 2 summarizes the final 
hyperparameter settings for the RF model. 

3.3.2. DT model 
The hyperparameters for the multi-target DT model are similar to 

those of the RF model, except that the DT model doesn’t have the 
number of trees since it is a single tree multi-target regression model. 
Table 2 summarizes the final hyperparameter settings for the DT model. 

3.3.3. ELM model 
Compared to RF and DT models, ELM has fewer parameters to tune. 

Among them, only three parameters are observed to affect the model 
performance significantly. They are the number of units or neurons to 
generate the mapping in the hidden layer of ‘SLFN’ (n_hidden= [256, 

400, 512, 1024, 2048] for the 500-bus network and [4096, 5116, 
6144,7168] for the 4918-bus network), the mixing coefficient for 
distance and dot products of input activation functions (α =
[0.1,0.2,0.5]), and the activation function. Since the reactive load 
qd in the input dataset often takes a negative value, a ‘sigmoid’ acti-
vation function is selected. Table 2 summarizes the final hyper-
parameter settings for the ELM model. 

Fig. 3 shows the training and validation mean absolute errors (MAE) 
of the three ML models, changing with the single most influential 
hyperparameter. The values at which both the training and validation 

Fig. 2. ERCOT hourly total load profile (from January 01, 2004 to July 15, 
2009); the inset shows the first representative 8,760 load samples, used for 
hyperparameter tuning. 
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errors are consistent, are selected for final model training. The hyper-
parameter tuning of RF and DT models was performed by using Scikit- 
learn1, and for ELM model tuning, D. Lambert’s ‘Python-ELM v0.3’2 was 
used. Once the hyperparameter settings are finalized, the whole dataset 
is split into an 80%-20% ratio for training and testing. 

4. Results & discussion 

4.1. Performance of ML models 

The efficiency of the proposed learning-augmented approach heavily 
relies on the end-to-end prediction of bus voltage magnitude and angle. 
Predictions are performed on 1,240 converged test samples for the 500- 
bus network and 6,041 test samples for the 4918-bus network. Figs. 4 
and 5 show the quality of the voltage magnitude prediction results 
compared with the actual magnitude obtained from MATPOWER. For 
the 500-bus test case, the lower and upper limits of the voltage magni-
tude are 0.9 and 1.1 per unit (p.u.), respectively; for the 4918-bus sys-
tem, the bound is narrower ranging between 0.95 to 1.05 p.u. 

It is observed that the RF and DT models perform better than the ELM 
model for the 500-bus test system. While most of the predicted voltage 
magnitudes of ELM are well within the technical bounds in Scenario 1, 
some violations are observed in Scenario 2. For the 4918-bus test system, 
all three models’ results scatter around the diagonal line, and most of the 
predictions are well within their ranges even though the bound is more 
restricting. The deviation from the diagonal line can be attributed to the 
increase of mapping dimension. Figs. 6 and 7 show the voltage angle 
prediction results. Though the prediction is performed in radians for 
better prediction accuracy, it is plotted in degree for better observ-
ability. For both test networks and both scenarios, the lower and upper 
limits of angles are -180◦ and +180◦ (-π and +π in radian), respectively. 
It is observed that the predicted voltage angles from all three ML models 
are well within their limits for both test networks. The results of the 
4918-bus network are slightly worse than those of the 500-bus network, 
due to its high dimensionality. Since both voltage magnitude and angle 
prediction results are within limits in most instances, severe constraints 
violation could be prevented. 

While all the three ML models perform well, the two tree-based 
models (i.e., RF and DT) perform better than ELM. This can be attrib-
uted to the superior multi-target handling capacity of tree-based models, 
whereas the automatic feature selection based neural network approach 
does not present a clear advantage in case studies. A detailed description 
on the statistical performance of ML models is summarized in Tables 3 
and 4 based on three metrics, including the mean absolute error (MAE), 
root mean square error (RMSE), and R-squared (R2). The results in 
Scenario 2 is inferior to those in Scenario 1, which is expected due to the 
additional 5% variation in the dataset. But overall, the performance of 
the learning-augmented method is still reasonable in Scenario 2, espe-
cially with the RF model. 

4.2. Post-processing from physics-based network equations 

After solving the voltage magnitude and angle with ML models, 

Table 2 
Optimal model hyperparameters.  

Model Network Hyperparameter 

RF model 500-bus family n_estimators = 60 

family min_samples_leaf = 4 

family min_samples_split = 10 

family max_features = 0.4 

family max_depth = 10  

4918-bus family n_estimators = 80 

family min_samples_leaf = 4 

family min_samples_split = 5 

family max_features = 0.3 

family max_depth = 30 

DT model 500-bus family max_depth = 30 

family min_samples_leaf = 2 

family min_samples_split = 2 

family max_features = 0.5  

4918-bus family max_depth = 50 

family min_samples_leaf = 10 

family min_samples_split = 5 

family max_features = 0.3 

ELM model 500-bus family n_hidden = 2048 

family rbf_width = 0.5 

family α = 0.2   

4918-bus family n_hidden = 6096 

family rbf_width = 0.4 

family α = 0.1   

Fig. 3. Performance of ML models with the most significant hyperparameters 
in terms of MAE of the aggregated voltage magnitude and angle prediction 
(dimensionless). 

Fig. 4. Voltage magnitude comparison in Scenario 1: predicted vs. actual value 
from MIPS. 

1 https://scikit-learn.org/stable/  
2 https://github.com/dclambert/Python-ELM 
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branch power flows are calculated and shown in Figs. 8 and 9. It is 
observed that predicted branch power flows closely follow actual branch 
flows in Scenario 1 but slightly deviate in some models of Scenario 2. For 
the 500-bus test network, the hard-limit of the branch power flow is 
relaxed for some instances by MIPS, which is reflected in the results. For 
the 4918-bus test network, the relaxation is only required in few cases 
and the actual and predicted branch flows are within their usual oper-
ating limits in most of the cases. This branch flow constraint relaxation 
allows the MIPS solver to have higher voltage angle variation, which is 

illustrated in Fig. 10. 
The violations of voltage parameters and branch flows are summa-

rized in Table 5. It is observed that the RF-based model presents fewer 
branch flow violations than the benchmark MIPS, for both test networks 
and both scenarios. 

In the context of real power system operation, it is not required to 
execute a perfect balance between the generation and consumption due 
to the inherent uncertainty in their nature. Since the real power system 
operation relies on an automatic generation control (AGC) mechanism 
responding to area control error (ACE) to bridge this gap [45], dynamic 
simulations are required, which is beyond the scope of this work. 
Considering the high accuracy of the prediction compared with the 
benchmark solver, the learning-augmented OPF approach would not 
affect the reliability of the power system. 

Fig. 5. Voltage magnitude comparison in Scenario 2: predicted vs. actual value 
from MIPS. 

Fig. 6. Voltage angle comparison in Scenario 1: predicted vs. actual value 
from MIPS. 

Fig. 7. Voltage angle comparison in Scenario 2: predicted vs. actual value 
from MIPS. 

Table 3 
Statistical performance comparison for the voltage magnitude prediction.  

Model Network Scenario MAE (p.u.) RMSE (p.u.) R2    

1 7.73 × 10−5 0.0005 0.9998 
RF 500-bus 2 0.0024 0.0076 0.9576   

1 0.0001 0.0070 0.9999  
4918-bus 2 0.0017 0.0050 0.9369   

1 3.92 × 10−5 0.0003 0.9999 
DT 500-bus 2 0.0039 0.0140 0.8575   

1 5.28 × 10−5 0.0006 0.9952  
4918-bus 2 0.0021 0.0069 0.8216   

1 0.0023 0.0050 0.9811 
ELM 500-bus 2 0.0082 0.0127 0.8844   

1 0.0008 0.0022 0.9521  
4918-bus 2 0.0068 0.0112 0.7124  

Table 4 
Statistical performance comparison for the voltage angle prediction.  

Model Network Scenario MAE (deg.) RMSE (deg.) R2    

1 0.0005 0.0015 0.9945 
RF 500-bus 2 0.0021 0.0036 0.9872   

1 0.0013 0.0080 0.9906  
4918-bus 2 0.0160 0.0380 0.8773   

1 0.0003 0.0013 0.9969 
DT 500-bus 2 0.0043 0.0085 0.9396   

1 0.0013 0.0102 0.9866  
4918-bus 2 0.0227 0.0586 0.8252   

1 0.0017 0.0030 0.9834 
ELM 500-bus 2 0.0093 0.0196 0.8115   

1 0.0072 0.0160 0.9656  
4918-bus 2 0.0580 0.0891 0.7521  

Fig. 8. Branch power flow profiles in Scenario 1 (the power flow of each 
branch is scaled to its p.u. capacity). 
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4.3. Computational time and solution quality comparison 

Computational efficiency is the main driving factor to employ ML to 
solve AC OPF. To evaluate the computational advantage of the proposed 
learning-augmented method, the solving time between the proposed 
method and MIPS is compared in Table 6. Both scenarios were simulated 
on a high-performance computing facility using 40 processors and 64- 
GB memory. 

Since the numbers of samples considered in both test networks are 
different, the average solution time per load instance is considered 
instead of the total solution time. The average solution time also rep-
resents the computational efficiency of solving one AC OPF instance. For 
learning-augmented approaches, the solution time consists of both ML 
prediction and network equation post-processing time. The post- 
processing computational time is similar between Scenarios 1 and 2. 
The speedup factor of the ML model is calculated based on the bench-
mark computational time of MIPS. It is observed that learning- 
augmented OPF models are approximately 15–20 times and 70–100 
times faster than MIPS for the 500-bus and 4918-bus networks, 
respectively. Regarding the training time of ML models, the ELM model 
is significantly faster than RF and DT models. 

To measure the solution quality of the proposed approach, the 
optimality checking metric O [23] is adopted. 

O = 1
P
∑P

n=1

cg
(
Proposed

)
− cg

(
Actual

)

cg
(
Actual

) (10)  

where P is the total number of considered cases, which is equal to the 
number of originally converged samples in the test dataset. The opti-
mality of the proposed approach on both networks, as summarized in 

Fig. 9. Branch power flow profiles in Scenario 2 (the power flow of each 
branch is scaled to its p.u. capacity). 

Fig. 10. Voltage angle variation in the MIPS result (actual angle)  

Table 5 
Solution quality comparison in terms of feasibility.  

Solver Network Scenario Voltage 
violation (%) 

Angle 
violation 

(%) 

Branch flow 
violation (%) 

MIPS  1 0 0 0.15  
500-bus 2 0 0 0.20   

1 0 0 0.14  
4918- 
bus 

2 0 0 0.11  

RF  1 0 0 0.02  
500-bus 2 0 0 0   

1 0 0 0.10  
4918- 
bus 

2 0 0 0.01  

DT  1 0 0 0.16  
500-bus 2 0 0 0.21   

1 0 0 0.13  
4918- 
bus 

2 0 0 0.06  

ELM  1 0.002 0 0.0009  
500-bus 2 1.112 0 0.05   

1 0.060 0 0.19  
4918- 
bus 

2 0 0 0  

Table 6 
Computational time comparison between the learning-augmented OPF solver 
and MIPS.  

Solver Network Scenario Average 
solution time (s) 

Speedup 
factor 

Training 
time (s)   

1 0.55 – – 
MIPS 500-bus 2 0.61 – –   

1 10.53 – –  
4918- 
bus 

2 14.50 – –    

1 0.038 14.47 1,500 
RF 500-bus 2 0.040 15.25 1,800   

1 0.113 92.77 35,000  
4918- 
bus 

2 0.160 90.62 55,000    

1 0.032 17.18 700 
DT 500-bus 2 0.043 14.12 890   

1 0.110 95.72 19,000  
4918- 
bus 

2 0.176 82.38 28,000    

1 0.035 15.71 4.48 
ELM 500-bus 2 0.044 13.86 6.82   

1 0.150 70.20 725.28  
4918- 
bus 

2 0.213 68.07 920  

Table 7 
Optimality results of learning-augmented OPF approaches.  

Network Scenario RF DT ELM 

500-bus 1 2.196× 10−4  3.516× 10−4  5.028× 10−4  

(P = 1240)  2 8.153× 10−4  0.0338 0.0112 

4918-bus 1 3.000× 10−3  3.126× 10−3  3.729× 10−3  

(P = 6041)  2 6.526× 10−4  1.329× 10−4  5.490× 10−4   
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Table 7, is regarded in an acceptable range compared to other results 
reported in the literature [23]. 

5. Conclusion 

This paper developed a learning-augmented method for solving AC 
optimal power flow, which integrated both power network equations 
and an MIMO ML model to yield a near-optimal AC OPF result. Three ML 
methods were employed and compared, including the random forest, 
multi-target decision tree, and extreme learning machine. The integra-
tion of network equations could ensure the satisfaction of inherent 
physical laws in the OPF problem. Results on both 500-bus and 4918-bus 
test networks have shown minimal constraints violation and loss of 
optimality. It was also found that the learning-augmented method could 
improve the OPF computational efficiency by approximately 15–100 
times depending on the network size. Potential future work will explore 
the concept of ‘learning to optimize’ [46] to further improve AC OPF 
solution feasibility by learning the evolutionary pattern in optimization. 
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