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A B S T R A C T   

The exponential growth of solar power has been witnessed in the past decade and is projected by the ambitious 
policy targets. Nevertheless, the proliferation of solar energy poses challenges to power system operations, 
mostly due to its uncertainty, locational specificity, and variability. The prevalence of smart grids enables 
artificial intelligence (AI) techniques to mitigate solar integration problems with massive amounts of solar energy 
data. Different AI subfields (e.g., machine learning, deep learning, ensemble learning, and metaheuristic 
learning) have brought breakthroughs in solar energy, especially in its grid integration. However, AI research in 
solar integration is still at the preliminary stage, and is lagging behind the AI mainstream. Aiming to inspire deep 
AI involvement in the solar energy domain, this paper presents a taxonomical overview of AI applications in solar 
photovoltaic (PV) systems. Text mining techniques are first used as an assistive tool to collect, analyze, and 
categorize a large volume of literature in this field. Then, based on the constructed literature infrastructure, 
recent advancements in AI applications to solar forecasting, PV array detection, PV system fault detection, design 
optimization, and maximum power point tracking control problems are comprehensively reviewed. Current 
challenges and future trends of AI applications in solar integration are also discussed for each application theme.   

1. Introduction 

Energy demand, proportional to the living population and economic 
development, has been increasing exponentially since the 21st century 
[1]. To prevent the energy crisis while protecting the ecosystem from 
fossil fuel-generated pollution, renewable energy is endowed with more 
responsibilities in sustaining the energy demand. Although the levelized 
cost of electricity (LCOE) of utility-scale photovoltaic (PV) has fallen by 
more than 77% in the last decade (i.e., from 0.370 $/kWh in 2010 to 
0.085 $/kWh in 2018), solar PV is still not cost-competitive compared to 
other energy commodities in the wholesale market (e.g., LCOE of 
onshore wind is 0.055 $/kWh) [2]. Therefore, a broad range of policy 
incentives, including fiscal, regulatory, and marketing instruments, have 
been introduced by governments to promote solar penetrations [3]. For 
example, feed-in-tariffs play a dominant role in Germany and Spain. The 
U.S. relies more on renewable energy portfolio standards, federal tax 
credits, and renewable energy certificates. The fixed budget incentive 
program (e.g., subsidies) determines the solar installation scale in China. 
As a result, solar energy, mostly solar PV energy1, has experienced 
phenomenal growth. Specifically, the global solar PV capacity reached 

480 GW and another 137.5 GW PV was installed in 2019 throughout the 
world. Fig. 1 shows the top 10 countries based on PV capacity. Most PV 
installations were added in the last few years, where China contributed 
more than half of the addition. 

As one of the largest man-made systems, the power and energy sys-
tem needs to be operated with high stability and low operational costs. 
Hence, the integration of uncertain and variable solar energy into power 
systems is complicated and challenging. A large collection of research 
projects are supported by governments and industries to mitigate these 
challenges, among which artificial intelligence (AI) is one of the 
emerging topics. In these projects, AI techniques are applied to different 
stages of solar integration, such as resource assessment, design optimi-
zation, optimal control, system monitoring, generation or irradiance 
forecasting, etc. For example, the U.S. Department of Energy (DOE) 
funded two rounds of projects, called Solar Forecasting and Solar 
Forecasting 2, in 2012 and 2017, respectively, to improve the solar 
forecasting, where AI plays a pivotal role. These projects are expected to 
improve the management of solar power’s variability and uncertainty, 
enabling its more reliable and cost-effective integration into the grid 
[4,5]. In addition, the DOE Advanced Research Projects Agency–Energy 
(ARPA-E) supported a projects to promote the AI applications in the 
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energy domain, where solar energy is one of the major topics [6]. The U. 
S. National Science Foundation (NSF) supports the Energy, Power, 
Control, and Networks Program, where AI applications to solar energy is 
an emerging topic [7]. The awarded projects covered machine learning 
(ML)-based PV fault detection [8], PV array connected topology opti-
mization [9], and PV voltage regulation [10]. China is also promoting AI 
research in solar energy by financing projects through various programs 
and foundations, such as the National Key R&D Program of China, the 
National Natural Science Foundation of China, Fundamental Research 
Funds for the Central Universities, and the National Key Research and 
Development Program of China. Meanwhile, a large number of projects 
are granted by the European Union through programs, such as the Ho-
rizon 2020 research and innovation program and European Regional 
Development Fund, to support AI-based solar energy research. 

In addition to academic research, the power and energy industry has 
also been driving applications of AI techniques to power and energy 
system operations in the past decades. For example, ML techniques 
helped IBM improve solar forecast accuracy by 30% from various data 
sources and provide forecasting services for several utilities. Moreover, 
ML-enhanced probabilistic renewable energy forecasting products were 

developed for three German transmission system operators (TSOs) in the 
EWeLiNE and Gridcast projects [11]. The GridSense, an intelligent dis-
tribution system management product developed by Alpiq in 
Switzerland, proactively and automatically controls the loads and stor-
age by learning consumer behaviour, system parameters, and weather 
conditions with AI [12]. Ampacimon developed an AI-based self- 
learning meteorological network for weather-dependent overhead line 
operation, called PrognoNetz [13]. In power systems with high solar 
penetrations, AI techniques are used to assist the electricity market 
design and operation. For example, an AI-based electricity price fore-
casting algorithm, i.e., the Pan-European Hybrid Electricity Market 
Integration Algorithm, was developed to forecast day-ahead electricity 
prices across Europe and allocate cross-border transmission capacity for 
twenty-five European countries [14]. Several AI-enabled robots were 
developed for PV farm operations and maintenance, such as PV panel 
cleaning [15] and PV farm monitoring [16]. 

Large attention has been given toward solar AI topics, therefore, 
leading to abundant literature. More than 35,700 and 44,500 results 
turned up when searching “solar photovoltaic AND artificial intelli-
gence” and “solar photovoltaic AND machine learning” in Google 
Scholar (by 2020–01-01), respectively. A collection of journals 
encourage publications on this topic by organizing special issues, 
accepting new types of articles, or even highlighting solar AI research in 
their publishing scope. For example, IEEE TRANSACTIONS ON INDUSTRIAL 

INFORMATICS opened a special section on developments in AI for industrial 
informatics to discover intelligent decision-making solutions for smart 
cities, smart grids, and smart homes [17]. This special section received 
more than 100 papers, among which AI applications to solar PV systems 
is a main topic. IEEE TRANSACTIONS ON INTELLIGENT SYSTEMS proposed a 
special issue in AI in power systems and energy markets to explore the AI 
benefits to power systems with distributed generations, such as solar PV 
[18]. In addition, ENERGIES summarized AI-based solar energy application 
cases in several special issues, such as energy harvesting [19]. Moreover, 
SOLAR ENERGY and JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY encourage 
authors to submit new types of articles, such as data articles, to promote 
AI research in solar [20,21]. JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY 

explicitly indicated that renewable energy resource assessment, anal-
ysis, and forecasting, where AI-related research thrives, are primary 

Nomenclature 

ACO Ant colony optimization 
AI Artificial intelligence 
ANN Artificial neural network 
CNN Convolutional neural network 
DNI Direct normal irradiance 
DNN Deep neural network 
DT Decision tree 
ELM Extreme learning machine 
FD Fault detection 
FFNN Feedforward neural network 
FLC Fuzzy logic control 
GA Genetic algorithm 
GBM Gradient boosting machine 
GHI Global horizontal irradiance 
GNI Global normal irradiance 
GP Gaussian process 
kNN K-nearest neighbors 
LDA Latent Dirichlet allocation 
LOEE Loss of energy expectation 
LOLP Loss of load probability 
LPSP Loss of power supply probability 
LSTM Long short-term memory 

MAE Mean absolute error 
MAPE Mean absolute percentage error 
MBE Mean bias error 
ML Machine learning 
MLP Multi-layer perceptron 
MPPT Maximum power point tracking 
NWP Numerical weather prediction 
PSO Particle swarm optimization 
PV Photovoltaic 
RBF Radial basis function 
RBFNN Radial basis function neural network 
RBR Red blue ratio 
ResNet Residual network 
RF Random forest 
RMSE Root mean square error 
ROC Receiver operating characteristic 
SA Simulated annealing 
SS Skill score 
SVM Support vector machine 
SVR Support vector regression 
TAC Total annual cost 
TS Tabu search 
TSC Total system cost  

Fig. 1. The top ten countries based on PV installation (by 2018).  
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fields of interest to the journal readership [21]. 
Solar AI research usually requires inter-disciplinary knowledge from 

various domains, such as power engineering, energy science, meteo-
rology, data science, computer science, economics, etc. This interdisci-
plinary nature in conjunction with the large body of literature makes the 
task of identifying relevant studies in an unbiased way for inclusion in 
systematic reviews both complex and time consuming [22]. Although 
the review papers in this field have provided excellent reviews on solar 
AI research, their comprehensiveness might not be optimal. First, the 
papers covered by the review papers were relatively limited. Most re-
view papers only summarized around 100 papers, which is far from 
comprehensive, compared to the large number of publications. Second, 
it is not clear what criteria being used for authors to select, categorize, 
and summarize papers in the review [23]. Largely relying on searching 
results from the bibliographic databases, authors were hardly exposed to 
every paper with an equal chance. Therefore, there exist biases in 
searching proper papers in academic literature databases, which in the 
end affects the objectivity of the literature review. Third, these review 
papers reviewed only one topic of solar AI research. Fourth, the text 
mining-based bibliometric analysis is especially beneficial to junior 
scholars who need an overall picture of the field, conference organizers 
who desire to offer mini-tracks and workshops with emerging topics, 
and journal editors who want to document the history and develop 
particular streams of research [24]. In recent years, text mining was 
utilized to help review literature and construct knowledge in-
frastructures in various domains, such as business intelligence [25], 
information science [24], and biomedical science [26,27]. Recently, 
[23] introduced text mining into the solar forecasting area and exem-
plified how to use text mining as an assistive approach for a systematic 
and comprehensive literature review. In this paper, we utilize text 
mining techniques as an assistive approach to collect, analyze, and 
categorize the bibliography of the recent 10 years’ AI-based solar energy 
research. Then, based on the constructed bibliographical dictionary, a 
taxonomical review of four main application themes is performed, 
which are solar forecasting, PV array and system fault detection, PV 
system design optimization, and control. 

The remainder of the paper is organized as follows. The text mining- 
based bibliographic analysis and categorization are described in Section 
2. Section 3 reviews ML, ensemble learning, and deep learning methods 
in solar forecasting. AI-based PV array detection and PV fault detection 
are reviewed in Section 4. Section 5 reviews ML and metaheuristic 
learning applications in PV system design optimization. Optimal control 
methods that rely on AI techniques are reviewed in Section 6. Section 7 
reviews papers on other relevant AI-based solar topics. Section 9 sum-
marizes and concludes the paper. 

2. Text mining 

Text mining, a subset of data mining, derives patterns and trends 
from raw textual data through statistical learning approaches. 
Compared to the traditional literature review that is likely exposed to a 
limited volume of published work, text mining is able to screen almost 
the entire literature records of a specific discipline. The uniqueness of 
text mining-assisted literature review is advanced by the easy accessi-
bility to several bibliographic databases, such as Google Scholar. 

2.1. Text mining process 

A successful literature review with text mining techniques requires 
six major steps [28,23]. First, problems and goals should be well- 
defined. In this research, we seek to answer the following questions by 
text mining the literature databases:  

Q1. Which journals should we refer to in solar AI research?  
Q2. What are the most important and frequent terms in this area?  

Q3. What are the hot topics in solar AI research and how can we 
categorize solar AI research?  

Q4. Which papers should we review for each solar AI topic? 

To answer those questions, in the second step, proper textual data 
should be identified and collected. We rely on three of the most popular 
bibliographic databases, i.e., Google Scholar, Web of Science, and Sco-
pus, to mitigate the limitations of each single database [29]. The 
searching query is: Topic=(“solar photovoltaic” AND (“artificial intel-
ligence” OR “machine learning”)) AND (Year Published = 2010–2020). 
The search is conducted in every database year by year to avoid database 
exporting limitations (e.g., Google Scholar only returns the 1,000 most 
cited papers). The total numbers of results retrieved from Google 
Scholar, Web of Science, and Scopus are, respectively 2,516, 1,433, and 
1,006 (by 2019–12-01). Then, all the results are combined with dupli-
cations removed, which leads to a total of 3,420 bibliographic records. 
However, this textual data might still be problematic. For example, some 
non-scholarly (e.g., handbooks, newsletters, and course notes) or irrel-
evant records (e.g., astronomy, material science, and agriculture) are 
contained in the data. To refine the results, a collection of keywords are 
used to filter out improper results by checking the title, source, and type, 
which are listed in Table 1. The quality control reduces the paper 
number to 2,772. 

In the third step, the textual data is preprocessed and organized for 
later analysis. This step is realized by applying a sequence of techniques, 
including creating the corpus, tokenization, upper-to-lower case con-
version, stop-word removal, whitespace removal, punctuation removal, 
stemming, document-term matrix generation. Details of these tech-
niques can be found in [28]. Two packages, namely, tm and corpus, in R 
are used for this purpose. With the document-term matrix, the rest three 
steps extract features, analyze patterns, and draw conclusions to identify 
relevant review papers, top journals, categorize technical themes, and 
create the literature infrastructure for further review. 

2.2. Bibliometric analysis and taxonomy 

Fig. 2 shows the number of relevant publications in the last ten years, 
which indicates an increasing trend (note that publications in the last 
month of 2019 are not available by the time of online search). Before 
2015, AI is not a mainstream technique in the solar PV energy toolbox. 
Most research in this period applied relatively simple ML algorithms, 
such as fuzzy logic, in the solar PV system design [30], control [31], and 
forecasting [32]. The literature body of solar AI research grows rapidly 
from 2015 to 2019. Considering the typical publication cycle, the two 
waves of solar AI publication increase are possibly due to the prevalence 
of ML and deep learning in the early 2010s and years after 2015. More 
advanced AI techniques bring not only quantitative increase but also 
breakthroughs in the existing research, such as image-based forecasting 
[33] and reinforcement learning-based microgrid control [34]. New 
solar research themes also emerge along with the new techniques in AI, 
such as PV array detection [35]. 

As part of the technology infrastructure, it is also of interest to 
identify the journals in this topic. Fig. 3 ranks journals by the number of 

Table 1 
Terms used to remove or select proper records.  

Source (without) Title (without) Type (with) 

Conference Biogeochemical Article 
Workshop Chemical Conference paper 
Coronal Astronomical Review 
Astrophysical Astrophysical Chapter 
Astronomy Astronomy Proceedings 
River Geophysical Book 
Temperature Agricultural  
Thermoeconomic Earth  
Forest Space   
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solar AI papers published in the last decade. SOLAR ENERGY was leading 
among all other journals, with a total of 403 papers. ENERGIES AND 

RENEWABLE ENERGY also published abundant papers. Considering the 
longer review process, solar AI research is also a hot topic in IEEE 
transactions. Different journals might have different focuses on solar AI 
research. For example, ENERGY AND BUILDINGS emphasizes in PV systems in 
smart home/buildings while IEEE TRANSACTIONS ON POWER SYSTEMS focuses 
more on utility-scale PV integrations to transmission or distribution 
systems. Among the 2,772 publications, 96 of them are review papers. 
Nearly half of review papers (39/96) in this domain are published in 
RENEWABLE AND SUSTAINABLE ENERGY REVIEWS, followed by ENERGY CONVERSION 

AND MANAGEMENT (4/96) and SOLAR ENERGY (4/96). While most review 
papers considered AI techniques as one group of methods, 20 papers 
directly reviewed AI applications to solar PV or renewable energy sys-
tems, which are listed in Table 2. It is observed from these review papers 
that forecasting, fault detection, control, and design optimization [48] 
are prevailing AI application cases for solar PV or hybrid renewable 
energy systems. Artificial neural network (ANN) and support vector 
machine (SVM) [38] are the two most widely-used AI algorithms and 
deep learning [40] is attracting high attention in recent solar research. 

Another way to identify the most popular research themes or tech-
niques is by calculating term frequencies. The term frequency is one of 
the key metrics for text mining, which reflects on how salient or 
important a term is. A term refers to a token of one word or a sequence of 
words, called an n-gram. Generally, a term with fewer tokens appears 
more frequently in the corpus. Therefore, in this research, n-grams with 
tokens of up to four words (i.e., unigrams, bigrams, trigrams, and tera-
grams) are analyzed. Fig. 4 shows the top 40 n-grams in the 2,772 titles. 
It is found that forecasting, optimization, control, and detection are the 
top four themes. Regarding the AI techniques, ANN, SVM, extreme 
learning machine, reinforcement learning, and particle swarm optimi-
zation are most frequently-used. The PV system is always included in 

hybrid renewable energy systems or home energy systems to coordinate 
with other types of renewable energies or electric components in this 
research. 

Even though the primary themes can be identified by the term fre-
quency, a more automatic taxonomy is required to group the solar AI 
research by categorizing publications (i.e., an unsupervised learning 
problem). To achieve this, a topic modeling approach, i.e., latent 
Dirichlet allocation (LDA), is used to discover the latent themes from the 
publication titles. LDA is a generative statistical model that assigns a 
document (i.e., a publication title in this study) to a mixture of themes 
based on the contributions of tokens to each theme. However, the 
number of themes is needed in order to assign each paper to a theme. 
Then, the optimal number of themes is defined by evaluating the clus-
tering results of different numbers. We follow the same procedure as in 
[23], which uses four indicators [56–59] to assess the results, as shown 
in Fig. 5. All the four metrics range between 0 and 1. Two metrics 
indicate the best number of themes with the maximum, while the other 
two metrics with the minimal value indicate the best number of themes. 
In solar AI research, the optimal number of themes is five by considering 
the four metrics equally. These five themes’ keywords are listed in 
Table 3. The first four themes are easily recognized from the keywords, 
which are forecasting, control, design optimization, and detection, 
which are consistent with what we observed from review papers and 

Fig. 2. The publication number by year.  

Fig. 3. The popular journals that publish solar AI research.  

Table 2 
Review papers that focus on solar, renewable, or power system AI research.  

Review Key words Journal #Refs. 

[36] Solar forecasting RENEW ENERG 105 
[37] Solar forecasting, neural network J CLEAN PROD 54 
[38] Solar forecasting, support vector 

machine 
J CLEAN PROD 92 

[39] Solar forecasting IEEE LAT AM TRANS 143 
[40] Solar forecasting, deep learning ENERG CONVERS 

MANAGE 

169 

[41] Solar forecasting, neural network APPL SCI 109 
[42] Solar forecasting, ML IET RENEW POWER GEN 147 
[43] PV, control RENEW SUS ENERG REV 139 
[44] PV-wind control, neural network RENEW SUS ENERG REV 91 
[45] PV design, control RENEW SUS ENERG REV 106 
[46] PV, control ENERGY 154 
[47] PV control, neural network IET RENEW POWER GEN 51 
[48] Renewable energy, design 

optimization 
RENEW SUS ENERG REV 145 

[49] PV monitoring, fault detection RENEW SUS ENERG REV 95 
[50] PV system, fault detection & diagnosis RENEW SUS ENERG REV 141 
[51] PV modeling, fault detection RENEW SUS ENERG REV 156 
[52] Renewable energy, neural network RENEW SUS ENERG REV 222 
[53] Solar energy modeling, neural network SOL ENERGY 161 
[54] Energy systems ENERGIES 114 
[55] PV integration, power quality RENEW SUS ENERG REV 94  
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term frequencies. Specifically, solar irradiance or power forecasting is 
one of the most effective and efficient approaches to mitigate the solar 
power uncertainties in power systems and is a dominant theme in the 
entire solar AI research. Solar PV detection mainly includes PV array 
detection and fault detection. Intelligent controllers play a significant 
role in tracking maximum power from PV panel arrays and regulating 
the inverter AC power output and frequency. AI techniques also improve 
design optimization of PV systems, such as optimal siting and sizing in 
the PV to the grid, hybrid renewable system, microgrid, and PV to 
electrical vehicle research. Nevertheless, keywords in the last theme are 
vague, such as “regression”, “classification”, and “sensor”, which could 
be used in any solar AI research. Therefore, all the research that is not 
included in the previous four themes are assigned to the last theme, such 
as cloud tracking, weather classification, and solar datasets. Based on 
probabilities associated with the theme assignments, each paper is 
assigned to one of the five themes. The extensive review in the following 
sections will focus on the first four main themes. 

Although text mining techniques can screen a large volume of papers 

and infer some information through linguistic analysis, it is only an 
assistive approach, which cannot replace the conventional human- 
centric literature reviews. A review paper typically summarizes and 
analyzes a few hundreds of papers, as listed in Table 2. It is almost 
impossible to review all the 2,772 papers collected in the text mining. 
Therefore, in the rest of this paper, publications that have higher 
assignment probabilities, annual citations, and were published more 
recently will be given more attention. 

3. Forecasting 

Integrating high penetration of solar poses challenges to reliable and 
economic power system operations, since the uncertain and variable 
solar power intensifies the frequency fluctuation, voltage instability, and 
harmonics. For example, cloud transient effects may intensify the power 
swing issues in systems with high solar penetrations [60,61]. Conse-
quently, more reserves or energy storage are required to ensure the 
power system reliability [62,63]. And these issues turn to a result of 

Fig. 4. Top 40 n-grams.  
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large solar curtailments and limiting further penetration of solar energy 
[64,65]. Hence, accurate solar forecasting, including both solar power 
and solar irradiance forecasting, becomes necessary in daily power 
system operations [66,67]. For instance, the California Independent 
System Operator needs hourly 30.5-h-ahead (30.5HA) solar forecasts in 
the day-ahead market and 5-min 1HA solar forecasts in the real-time 
market for the unit commitment and economic dispatch [68]. The 
Electric Reliability Council of Texas uses solar forecasts, along with load 
and wind forecasts, to determine daily regulation, responsive (i.e., 
spinning), and non-spinning reserve requirements. A detailed literature 
review on solar forecasting economics can be found in [69]. 

There are generally two categories of solar forecasting methods. The 
first group is physical methods, which are mainly numerical weather 
prediction (NWP) models. The second group is data-driven methods. 
Compared to physical models that use physical laws and meteorological 
conditions, data-driven models are generally suitable for up to 6HA 
forecasting. Sometimes, data-driven methods are used in post- 
processing to enhance the physical model, where the inputs to data- 
driven models are physical model outputs. We also consider this group 
of methods as data-driven methods in this paper. Additionally, only the 
advanced AI techniques are reviewed in this paper, which means 
traditional statistical models, such as auto-regressive moving average 
(ARMA) [70] models and auto-regressive moving average with exoge-
nous variables (ARMAX) [71] models are excluded. Among data-driven 
models, data and algorithm are the two most important factors that 
influence the forecast accuracy. Hence, this section reviews AI-based 
forecasting methods by the input and algorithm. 

Forecasting results are generally evaluated by (i) forecasting error 
metrics, such as mean bias error (MBE), root mean square error (RMSE), 

mean absolute error (MAE), (ii) error distributions or their statistics, 
such as forecast-observation joint distribution, Kolmogorov Smirnov 
Integral, skewness, kurtosis, and entropy of error distributions, (iii) skill 
scores (SS), and (iv) uncertainty metrics, such as pinball loss, reliability, 
and sharpness. Other types of metrics, such as metrics that quantify 
ramp characteristics and economic metrics are also used in the litera-
ture. Definitions and formulations of these standard forecast accuracy 
assessment metrics can be found in [72,73]. 

3.1. Forecasting inputs 

There are two categories of approaches, according to the input 
source for solar forecasting [69]: models with endogenous inputs (his-
torical forecasting target variable) and models that use exogenous inputs 
together with historical forecasting target variable, such as meteoro-
logical measurements, sky images, satellite data, NWP, and spatially or 
temporally hierarchical information. Although the response time of 
models that only use endogenous data may be faster [74], they cannot 
compete with models including exogenous data in virtually all cases. 

3.1.1. Endogenous data 
Endogenous data is a major relevant input to AI models, from which 

forecasts can be generated with satisfactory accuracy. [75] compared 
three forecasting models (i.e., recursive autoregressive and moving 
average (RARMA), coupled autoregressive and dynamical system 
(CARDS), and ANN) with only the past irradiance data as inputs in the 
1HA–6HA global horizontal irradiance (GHI) forecasting. Similarly, only 
the past three GHI data points were used to train ANN models for 5-min- 
ahead (5MA) forecasting with optimal performance in different months 
and weather conditions [76]. It was found that ARMA and ANN had 
similar results in terms of the forecasting MBE, RMSE, MAE, and error 
distributions. In another solar PV power forecasting paper, [77] found 
that by only using solar power in the past 13 h, ANN outperformed auto 
regressive integrated moving average (ARIMA) and k-nearest neighbors 
(kNN) in 1HA and 2HA solar power forecasting, especially after being 
optimized by the genetic algorithm (GA). Compared to traditional sta-
tistical models, AI models that only use endogenous data are less pop-
ular. The previous 80 min power values were used as the input to ANN 
models for 10MA–60MA forecasting to avoid intensive exogenous data 
while obtaining satisfactory accuracy [78]. 

A collection of research has been done to analyze the impact of 
combinations of endogenous and exogenous data on the forecast accu-
racy. Including more informative and well-selected input in the model 
will generate more accurate forecasts. Nonetheless, forecasting with 
only endogenous is still widely adopted for different purposes. Actually, 
most papers use traditional statistical models with endogenous input as 
benchmarks to validate the superiority of exogenous data-included 
models [79–82]. For example, [83] built a set of benchmark models, 
including ANN, support vector regression (SVR), and Gaussian Process 
(GP) models, solely using past GHI measurements. In some cases where 
the computational time is more important than the accuracy, exogenous 
data are not considered in the input. In [74], the power values of the last 
10 min along with the corresponding 10 min from 24 h ago as well as a 
year ago were used to predict 1MA solar power for energy storage sys-
tem control. 

3.1.2. Meteorological measurements 
The most natural way to extend the forecasting with endogenous 

data is to include meteorological measurements, since most weather 
stations and solar power plants are equipped with various types of 
meteorological measurement devices. Typical weather parameters 
include irradiance, temperature, wind speed, pressure, etc. For example, 
[84] used the maximum and minimum temperature to improve the ANN 
accuracy in GHI forecasting. It was found that more exogenous tem-
perature from ancillary stations improved the forecast accuracy. [85] 
investigated the impacts of different weather parameter combinations 

Fig. 5. Evaluation of the best number of LDA themes. The right axis indicates 
weather the metric should be maximized or minimized. 

Table 3 
Top 10 words contributing to each solar AI research theme.  

Theme 1 
(forecasting) 

Theme 2 
(detection) 

Theme 3 
(control) 

Theme 4 
(design 
optimization) 

Theme 5 
(others) 

forecast network power hybrid data 
irradiance neural system optimization regression 
global detection maximum design estimation 
short-term analysis track renewable classification 
weather fault fuzzy management sensor 
ensemble plant mppt smart feature 
comparison image controller grid selection 
evaluation diagnosis monitor microgrid dynamic 
meteorological distribution inverter storage cloud 
production cluster dynamic distribution remote  
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on the ANN accuracy and found that the input with all weather data (i.e., 
module temperature, ambient temperature, and irradiance) yielded the 
best forecast accuracy in 1HA–24HA PV power forecasting. In [86], a 
total of 74 inputs, including power, global normal irradiance (GNI), 
temperature, wind speed, humidity, pressure, and calendar features, 
were used in 15MA–60MA solar power forecasting, which found that the 
latest power and the time difference in respect of sunrise were the two 
most critical parameters in forecasting. 

Forecasting with and without exogenous data was compared in the 
literature to show the effectiveness of involving exogenous data. For 
example, [79] compared ARMA with only power data and ANN with 
power and pressure, nebulosity, ambient temperature, wind speed, peak 
wind speed, wind direction, sunshine duration, relative humidity, and 
rain precipitations. The exogenous data improved the ANN model by up 
to 7.8% [82] and 9% [79] in 1HA and 24HA solar forecasting, respec-
tively. Nevertheless, it was reported in some research that the benefit of 
weather parameters to the accuracy improvement in very short-term 
solar forecasting was limited. For instance, [87] found that weather 
parameters (i.e., temperature, humidity, wind speed, and cloud cover) 
were not able to improve the 5MA–60MA solar power forecasts. 
Therefore, it is suggested to carefully select weather feature combina-
tions in specific forecasting tasks to avoid overconfidence in the merits 
of meteorological features. 

3.1.3. Numerical weather prediction 
AI techniques are used as post-processing approaches to enhance 

NWP forecasts. [88] found that variables related to lagged observations 
were more important for shorter forecasting horizons while the impor-
tance of NWP forecasts increases in longer horizons. NWP forecasts from 
ALADIN-France were combined with solar GHI in ANN models to pro-
vide 1HA GHI forecasts with a 0.7% nRMSE improvement [89]. The 
authors expected that the results could be further improved by better 
NWP forecasts. 

It is observed that NWP improves longer-term solar forecasting more 
significantly. For example, [90] proved that the improvements brought 
by the European Centre for Medium-Range Weather Forecasts (ECMWF) 
were negligible in 3HA forecasting. However, the best 6HA forecasts 
were provided by the ANN models built with ECMWF outputs and the 
satellite GHI data. Moreover, a 42.9% improvement was obtained in 
1DA GHI forecasting by feeding NWP forecasts from the North American 
Mesoscale Forecast System (NAM) into a long short-term memory 
(LSTM) model [91]. The importance of NWP forecasts from the Japan 
Meteorological Agency mesoscale model was assessed in [88] for 
different time horizons by their contributions to gradient boosted 
regression trees. It was found that the importance of some NWP fore-
casts, such as cloud cover indices and the western wind speed, increased 
with the time horizon. Nowadays, NWP models have a more rapid up-
date rate and better granular spatio-temporal resolutions, which are 
encouraged to be involved in AI-based solar forecasting approaches 
[92]. 

3.1.4. Satellite data 
The advantage of utilizing satellite images in solar power forecasting 

is their capability of monitoring the amount and movement of clouds 
[93]. Satellite images provide useful information for solar forecasting, 
such as cloud movements, coverage, and derived irradiance. For 
example, [94] computed cloud velocity and fraction from Geostationary 
Operational Environmental Satellite (GOES) images, which was input 
into ANN models for 30HA–120HA GHI forecasting. The improvements 
over persistence ranged from 5% to 25% according to different time 
horizons. In [95], the cloud cover index (CCI) was derived and predicted 
by the self-organizing map and the exponential smoothing state space 
model from the Japan Meteorological Agency Himawari-7 satellite im-
ages. Then, the CCI forecasts and historical GHI were fed into an ANN 
model for 1HA GHI forecasting with superior accuracy. 

Satellite data is always combined with NWP forecasts in AI models 

for better accuracy. [96] predicted irradiance from satellite- (i.e., GOES- 
9) and NWP-derived (i.e., the Conformal-Cubic Atmospheric Model) 
irradiance values by the generalized additive model (GAM), which 
achieved a 3.6% lower RMSE, compared to the GAM model with only 
satellite-derived GHI. The most correlated features were selected from 
30 satellite-derived irradiance and combined with ECMWF forecasts for 
6HA GHI forecasting with the best accuracy [90]. A deep neural network 
(DNN) was used to forecast 1HA–6HA GHI at 25 locations in the 
Netherlands from the METEOSAT satellite image-derived irradiance and 
ECMWF forecasts. The developed method showed equal or better ac-
curacy than the benchmarks trained with ground measurements, which 
provided a successful alternative to local telemetry-based forecasting. 

However, the accuracy of satellite image-based solar forecasting is 
highly affected by the spatial resolution and time horizon. [93] found 
that the irradiance forecasting based on cloud impact factors derived 
from satellite images would have larger errors for smaller target areas or 
longer time horizons. Specifically, the SVR forecasting coefficient of 
determination (R2) decreased from 0.91 to 0.79 when the radii of areas 
reduced from 35 km to 0.9 km, and the RMSE of 300MA forecasting 
could be 5 times larger than that of 15MA forecasting. Therefore, fore-
casters should be aware of the risk of accuracy deterioration in shorter- 
term forecasting for solar sites with fine spatial-granularity. 

3.1.5. Sky images 
Unlike NWP and satellite images, sky images are especially helpful in 

intra-hour solar forecasting. Compared to other ground measuring de-
vices, sky imagers are more cost-efficient. Two research groups at the 
University of California, San Diego have done abundant work on sky 
image-based solar forecasting. In their early work, cloud coverage 
indices were calculated from sky images by the red blue ratio (RBR) 
thresholding and fed into ANN models together with measured GHI to 
forecast GHI [97]. Then, cloud fractions of grid elements along the cloud 
incoming direction were extracted to forecast intra-15MA direct normal 
irradiance (DNI) with encouraging accuracy [98]. The same cloud 
fraction features were combined with lagged DNI values to forecast 5MA 
and 10MA DNI [99], 5MA, 10MA, 15MA PV power [100], and 10MA 
irradiance ramps [101] with ANN models. [102] found that the mean, 
standard deviation, and entropy of red, blue, green, and RBR values 
from sky images provided limited improvements to kNN models, 
compared to the lagged irradiance features, especially for GHI fore-
casting. As they explained, one possible reason was that the image- 
derived parameters are only relevant when clouds are present. Howev-
er, the same pixel statistics were found to benefit the 5MA–20MA DNI 
interval forecasting [101]. This might be due to that more advanced ML 
models, such as SVR and ANN, were used for the forecasting tasks. 

Similar features were also utilized to help very short-term solar 
forecasting by other researchers. For example, sky image pixel RBR 
statistics, i.e., mean, standard deviation, and entropy, were extracted 
and combined with meteorological measurements for 1HA GHI fore-
casting in different frameworks [103–105]. [106] trained ANN models 
with sky image-derived cloud coverage, average, mode, median, and 
standard deviation of the red-green–blue (RGB) channels, and other 
parameters. These features were found to be especially helpful for intra- 
30MA forecasting. A total of 26 features were extracted from each sky 
image and selected by the principal component analysis in [107]. Then, 
these features together with solar azimuth, solar elevation, and the 
clear-sky irradiance were used to train ANN models, which showed 
better GHI forecasting performance than satellite image-derived models. 

Nevertheless, the human-defined features may lose important in-
formation, which cannot well represent sky images or not optimal for AI 
models. With the advent of deep learning, sky image features can be 
extracted automatically by encoding techniques. For example, [108] 
constructed sky image features by building a convolutional neural 
network (CNN) that was used for cloudiness condition classification. 
Similarly, [109] first extracted sky image features from a 3D classifica-
tion CNN model, which were used in an ANN model for 10MA GHI 
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forecasting. The automatically extracted features were found to improve 
the forecast accuracy comparing to human-crafted features. 

Recently, researchers have investigated the possibility to predict 
power and irradiance directly from images. For example, [110] devel-
oped an end-to-end framework, called the SolarNet, which took one sky 
image as input and forecast 10MA GHI without any feature engineering. 
[33] proposed a similar approach, but included a sequence of sky images 
for contemporaneous PV power estimation. Then, the input and output 
of this framework were optimized by including lagged PV measure-
ments, which outperformed the persistence by around 16% [111,112]. It 
is expected that by applying advanced deep learning architectures, the 
accuracy of sky image-based solar forecasting could be further 
improved. 

3.1.6. Spatio-correlated hierarchical information 
Solar irradiance or power is highly spatially and temporally corre-

lated. Therefore, information within the temporal and spatial hierar-
chies is useful to improve AI model performance in solar forecasting. For 
example, solar irradiance or power measurements from neighbouring 
PV systems are input into AI models to capture the spatial patterns. 
[113] compared different combinations of 4 nearby PV systems and 
their meteorological measurements as exogenous inputs to ANN models 
for solar power forecasting. It was found that considering more infor-
mation on neighboring distributed PV systems and meteorological 
measurements could enhance forecast accuracy. [114] considered a 
significantly larger number of PV systems in their kNN forecasting 
model. A “PV-Sensor Field”, composed of 202 distributed rooftop PV 
systems, was used to capture the cross-correlations among PV-systems 
that were influenced by the same cloud sequentially. The developed 
method indicated superior performance than the persistence during 
highly variable days in 5MA–8MA forecasting. [84] improved ANN 
model performance by adding 30 meteorological stations’ weather 
measurements in solar irradiation forecasting. [115] compared four 
data-driven models, i.e., ANN, SVR, boosted regression tree (BRT), and 
least absolute shrinkage and selection operator (LASSO), which fore-
casted 30MA–120MA GHI with the nearby 65 sites. BRT was reported to 
have the best performance with the help of neighboring solar irradiance 
data. Improvements associated with the spatio-temporal data is affected 
by the time horizon. It was found in [116] that the ANN model trained 
with data from the neighboring 65 stations reduced errors in 1HA–3HA 
forecasting, while the model that used only initial data from the station 
for which the prediction was made generated the best 4HA–6HA 
forecasts. 

The derived neighboring solar irradiance or power is also beneficial 
to the onsite forecast accuracy. For example, [117] investigated the ef-
fects of inclusion of the satellite-derived GHI with spatio-temporal cor-
relations in ANN and SVR models for 1HA–3HA GHI forecasting, and 
achieved significant improvements. Physically derived PV power was 
derived for 3 nearby solar farms and was used in conjunction with 
ECMWF predictions to train gradient boosting machine (GBM) models 
for PV power forecasting [118]. In a hierarchical system, the lower-level 
information provides details for higher-level forecasting. For example, 
solar power at each inverter was first predicted by ANN and SVR models 
and then summed up to obtain the forecasts for the entire 500 kW solar 
plant [119]. Results showed that the forecasting mean percentage error 
was reduced by this simple hierarchical operation. 

3.2. Artificial intelligence-based forecasting algorithm 

Most AI-based solar forecasting models are ML models. ML models 
learn relations between inputs and outputs from data even if the rep-
resentation is impossible. Compared to NWP models, ML models have 
significantly more frequent update rate and are more accurate for very 
short-term solar forecasting. The most widely used ML models for solar 
forecasting are kNN, ANN, SVR, random forest (RF), GBM, and deep 
learning models. Forecasting accuracy is related not only to the learning 

capability of ML models, but also other factors, such as solar time series 
forecastability, meteorological conditions, pre- and post-processing, etc. 
Comparisons of ML models should be made with the same condition. 
This is commonly ensured in case studies within each paper, but rela-
tively challenging to fulfill across multiple papers. Therefore, the eval-
uation metrics listed in the tables in this section are for reference 
purposes. This will be further detailed in the discussion section. 

3.2.1. K-nearest neighbors-based solar forecasting 
kNN is a non-parametric method, which is one of the simplest ML 

algorithms. In kNN, solar forecasts are calculated by the weighted 
average of the k-nearest neighbors that are determined by the distance. 
kNN could be used as the forecasting engine to replace the persistence 
model. For example, [102] predicted 5MA–30MA GHI, DNI, and their 
intervals from local telemetry and sky images with kNN, which showed a 
10%–25% improvement compared to the persistence method. kNN 
models also indicated better accuracy than NWP models, such as re-
ported in [123]. Although kNN might perform well [120,122,121,74], it 
was not as competitive as more advanced ML models in most cases, as 
shown in Table 4. For example, both GA optimized ANN and ANN beat 
kNN for 1HA–2HA PV power forecasting in [77,100]. Therefore, kNN 
was mainly used as a benchmark or for comparative analysis 
[124,126,127,74]. [127] included kNN in a pool of 11 ML models for 
12HA PV power forecasting and found that kNN was worse than SVR 
and decision tree (DT) models. SVR, RF, and kNN were compared in 
[126] for 1HA GHI forecasting, where kNN was less accurate. However, 
combined with other models, kNN performance could be enhanced. For 
example, [129] ensembled GB, ANN, kNN, and SVR by least squares, 
which improved the 1DA PV power forecast accuracy by 5%. As an 
instance-based learning method, kNN is easy and fast to implement and 
works well on small datasets. 

3.2.2. Artificial neural network-based solar forecasting 
ANN is the most popular solar forecasting model algorithm. ANN 

captures relations between inputs and output(s) with multiple inter-
connected layers of neurons. The weighted input neurons are connected 
to the output neurons through activation functions. The training pro-
cessing is to update the weights and biases so that the objective function, 
i.e., errors in solar forecasting, is minimized. Based on the network ar-
chitecture, ANN models can be further divided into feedforward neural 

Table 4 
Representative kNN solar forecasting papers.  

Reference Location Horizon Comparison 

[77] US 1HA–2HA GA- 
ANN>ANN>kNN>ARIMA>persistence  

[120] China 1DA–3DA kNN and ANN > SVR, MLR, and 
persistence  

[100] US 5MA–15MA ANN>ARIMA>kNN>persistence  
[102] US 5MA–30MA kNN>persistence  
[121] US 15MA–2HA kNN, ANN>persistence  
[122] US, 

Denmark, 
Italy 

1DA kNN>ANN, SVR>persistence  

[123] US NA kNN > physical model  
[124] China 1DA MARS>kNN>SVR>ANN>CART  
[125] NA 1DA GBM>RF>kNN>DT  
[126] Spain 1HA SVR>RF>kNN  
[127] NA 12HA Conflicting results 
[128] US 5MA–20MA kNN > persistence  
[129] Italy 1DA Conflicting results 
[130] Taiwan 1HA kNN-ANN > kNN  
[131] Saudi 

Arabia 
1HA ANN>kNN>DT>SVR  

[132] US 5MA–30MA GBM>kNN>persistence  
[74] US 1MA kNN>SVR>RF   
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network (FFNN), radial basis function neural network (RBFNN), multi- 
layer perceptrons neural network (MLP), and extreme learning ma-
chine (ELM). Other types of ANN, such as the recurrent neural network 
(RNN, mainly the LSTM models) and CNN will be discussed in deep 
learning section. These four groups of ANN models are not mutually 
exclusive and their representative papers are listed in Table 5. 

Specifically, an FFNN is an ANN architecture, wherein connections 
between neurons do not form a cycle, which is different from RNNs. 
FFNNs are sometimes called BPNN or FFNN with back propagation. 
Actually, back propagation is a training algorithm, which takes the 
feedforward values to calculate errors that are propagated to previous 
layers through the chain rule. FFNNs are widely used in solar fore-
casting. For example, [135] investigated the impact of input neurons on 
the FFNN performance in solar radiation forecasting and found that 
using 6 neurons in the input layer could receive more accurate forecasts. 
[136] developed a three-layer FFNN with 28, 12, and 11 neurons in the 
input, hidden, and output layer, respectively. The proposed architecture 
was determined by the selected input, designed output, and an empirical 

formula, which provided accurate 24HA PV power output forecasts. A 
similar approach was used to determine the input and output neurons in 
[137], while a trial-and-error method was used to determine the hidden 
layer neurons. [77] used an automatic way to optimize the FFNN ar-
chitecture for 1HA–2HA PV power output forecasting. Specifically, GA 
was used to optimize the numbers of input and hidden layer neurons, 
which improved the performance by 30%. 

RBFNN is a type of ANN that has three layers with a nonlinear radial 
basis function (RBF) as the activation function. RBFNNs are popular in 
solar forecasting due to their better approximation capabilities, simpler 
network structures and faster learning algorithms. For example, [147] 
compared different RBFNNs in the daily solar radiation forecasting using 
meteorological data and found that RBFNN was better than MLP. In 
[148], RBFNNs with multiple output neurons were developed for 24HA 
PV power output forecasting under various weather conditions. 
Different numbers of neurons in the hidden layers were tested to ensure 
accurate forecasts. [149] developed RBFNNs to forecast daily power 
generation of PV plants in 26 different Indian cities, which provided 
more accurate forecasts than polynomial regression. 

MLP is a special class of FFNN, which usually contains multiple 
hidden layers. With more hidden layers, MLP is able to learn more 
complex patterns in the data for solar forecasting, which also makes the 
model optimization more challenging. Therefore, optimizing the topol-
ogy and hyperparameters is critical when applying MLP in solar fore-
casting. For example, [131] proposed an MLP with 2 hidden layers with 
7 and 5 neurons, respectively. The numbers of neurons at four different 
layers were selected by adding more neurons and keeping track of the 
RMSE performance, until the error is minimized over the training data. 
The MLP model was found to outperform SVR and kNN in case studies. 
Cross-validation was used in [144] to obtain the best MLP configuration 
for 24HA solar irradiance forecasting. The best MLP had two hidden 
layers, with 11 neurons in the first hidden layer and 17 neurons in the 
second layer. [140] did a more comprehensive exploration of the MLP 
hyperparameter settings, which included the number of neurons in the 
input layer, hidden layer, activation functions, and optimization func-
tions. The developed MLP provided more accurate forecasts than 
ARIMA, Bayesian inference, Markov chains, and kNN. A more advanced 
optimization algorithm, GA, was used in [101] to optimize the MLP 
input, number of layers, and number of neurons in each layer, which 
achieved 6.0%–11.3% improvements in 10MA GHI and DNI forecasting. 
[145] used MLP as the forecasting model to study the forecasting un-
certainties associated with the measurement error, the time series 
variability, the machine learning model, and the error related to the 
horizon. 

ELM is a special type of single layer FFNN. Compared to ANNs that 
are trained with back propagation, ELM randomly selects the hidden 
layer weights and biases and determines the output weights by the 
Moore–Penrose generalized inverse, so that the training speed is thou-
sand times faster. Due to the outstanding performance in terms of 
learning speed and accuracy, ELM is widely used in solar forecasting. For 
example, the training time of ELM was 0.2028–0.3432 s, which was less 
than that of ANN (0.7225–0.7405 s) and SVR (2.9140–3.8612 s) in 
[150]. [156] explored using several ML models, including SVR, MLP, 
GP, and ELM, to forecast solar radiation from satellite data, where the 
ELM was the best. The ELM forecasting errors were also smaller than 
ANN and SVR in the case studies of this research. The ELM performance 
was boosted by 3 optimization algorithm, i.e., particle swarm optimi-
zation (PSO), Craziness PSO, and accelerated PSO (APSO), which 
selected appropriate values of weights. It was found that APSO-ELM 
achieved better performance than standard ELM and ELMs with other 
optimization methods [151]. [81] optimized the ELM model by selecting 
the best input features using mutual information criteria, which had the 
advantage of achieving good performance in terms of accuracy within an 
extremely fast computational time. Other ELM papers that used similar 
techniques are listed in Table 5 without discussion. 

Table 5 
Representative ANN solar forecasting papers.  

Reference Location Type Horizon Evaluation metrics 

[77] US FFNN 1HA–2HA RMSE=
(116.54–162.37) kW 

[120] China FFNN 1DA–3DA MAPE=
(17.31–49.87)% 

[133] Algeria FFNN NA RMSE = 64.34 W/m2 

[134] Singapore FFNN NA MAPE = 6.03% 
[121] US FFNN 15MA–2HA RMSE=(41.9–103.9) 

W/m2 

[129] Italy FFNN 1DA nMAE=(1.29–5.16)% 
[94] US FFNN 30MA–4HA RMSE=(49.79–81.26) 

W/m2 

[124] China FFNN 1DA RMSE=(120.2–135.6) 
W 

[135] Turkey FFNN NA nRMSE = 3.58% 
[127] NA FFNN 12HA MAPE=(0.59–2.33)% 
[136] US FFNN 24HA MAPE=(6.78–7.67)% 
[137] US FFNN 24HA MAPE=

(10.06–18.89)% 
[95] Singapore FFNN NA nRMSE=

(28.19–43.69)% 
[138] Portugal FFNN 1–3DA FF = 28.2% 
[139] Germany FFNN 1DA 23% 
[131] Saudi Arabia MLP 1HA RMSE=(43.75–47.44) 

W/m2 

[140] France MLP 1DA RMSE = 3.73 MJ/m2 

[141] NA MLP 1DA nRMSE = 7.78% 
[142] NA MLP 1DA–3DA RMSE=(42.29–84.65) 

W/m2 

[143] France MLP 24HA RMSE=(33.10–92.55) 
W/m2 

[144] Italy MLP 24HA R2=(95–98)% 
[145] France MLP 6HA NA 
[146] The 

Netherlands 
MLP 1DA rRMSE = 31.31% 

[147] Saudi Arabia RBFNN NA R2=98.80% 
[148] China RBFNN 24HA MAPE = 9.45% 
[122] US, Denmark, 

Italy 
RBFNN 1DA nRMSE=

(5.99–11.41)% 
[149] India RBFNN NA RMSE = 2.30 kWh 
[150] Malaysia ELM 1HA and 1DA nRMSE=

(13.83–21.84)% 
[151] India ELM 15MA–60MA MAPE=(1.44–4.19)% 
[81] Multiple 

countries 
ELM 15MA–24HA RMSE=(74.5–197.3) 

W/m2 

[152] India ELM 15MA–1DA MAPE = 1.244% 
[153] US ELM NA MAPE = 2.55% 
[154] NA ELM 5MA RMSE = 0.188 W/m2 

[155] Jordan ELM 25HA RMSE = 15.07 kW 
[156] Spain ELM NA RMSE=

(67.28–107.19) W/m2 

[157] Singapore ELM 5MA NA 
[158] China ELM NA RMSE=(3.83–5.86)%  
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3.2.3. Support vector regression-based solar forecasting 
SVR is a kernel-based ML algorithm, which constructs a hyper-tube 

in a high-dimensional space that best approximates the continuous- 
valued function, while balancing model complexity and prediction 
error [169]. SVR is another popular algorithm used in solar forecasting. 
Based on the kernel function, SVR can be divided into SVR with linear, 
polynomial, or RBF kernel, among which RBF is the most widely-used 
kernel. Table 6 summarizes the latest representative papers that used 
SVR in solar forecasting. A more comprehensive review of SVR and SVM 
applications can be found in [38]. 

Linear kernel-based SVR was found to provide more accurate fore-
casts than other ML models in some case studies. [126] adopted linear 
kernel function in SVR for 1HA GHI forecasting. Compared to bench-
marks, such as RF and kNN, SVR achieved the best forecast accuracy 
with MAE ranging from 49 W/m2 to 64 W/m2. 

RBF is generally more flexible than linear and polynomial functions, 
therefore, is more popular. For example, [160] developed SVR with an 
RBF kernel to forecast 15HA–33HA power output from NWP outputs for 
a 1 MW PV power plant in Japan. Case studies with 2 years of data 
showed that the developed SVR model reduced forecasting errors by 
more than 10%, compared to the persistence method. It was also found 
that the SVR with cloudiness was improved by almost 33% and 80% 
based on RMSE and MAPE, respectively. [161] also used RBF as the 
kernel function in SVR for solar forecasting. The SVR was solved by 
using Lagrange multipliers, which achieved better accuracy than AR and 
ANN in 1HA–3HA forecasting for 9 months data in 2005. Various pre- 
processing techniques were applied to improve the accuracy. A 2D 
data representation and transmissivity-based normalization was sug-
gested by the results. Similarly, SVR with RBF was compared with hid-
den Markov model (HMM) in 5MA–30MA solar irradiance forecasting, 
which showed better forecasts with accuracy larger than 90%. SVR was 
used as a blending model to post-process forecasts from satellite-based 
model, NWP model, smart persistence, and a hybrid satellite-NWP 
model in [159]. It was found that the blending model improved GHI 
forecasting by 17%. [168] found the annual value of SVR forecasting 
increased 22.32€for each 1 kWh improvement in RMSE. 

Weather-aware forecasting that has one SVR for each weather con-
dition is able to further improve the forecast accuracy. [162] applied bi- 
model SVRs with RBF that are separated based on the cloudiness for 
5MA–15MA solar irradiance forecasting. The developed method showed 
superior performance in terms of forecast accuracy and ramp-down 
event detection. [165] used 3 SVR models with RBF to forecast 1HA 
PV power in different weather conditions that were clustered by the k- 
means method. It was found that SVRs generated better forecasts, 
compared to ANN that used the same methodology. [163] divided the 
scenarios using self-organizing maps and built an RBF-based SVR for 
each scenario. The parameters of SVRs were optimized by PSO. The 

optimized SVRs were more accurate than the random walk method, 
exponential smoothing method, and ARIMA method. 

As a black-box model, it is always challenging to interpret results 
from SVRs. In [166], structural variable selection methods were intro-
duced to SVR to consider the heredity principle and sparsity in the data. 
The SVR consistency was guaranteed by selecting the RBF kernel pa-
rameters using an information criterion. The developed SVR model 
improved the forecast accuracy by 5.06%–70.03%. 

3.2.4. Ensemble learning-based solar forecasting 
Ensemble learning is a methodology that combines multiple learners 

to achieve better performance. There are different ways to categorize 
ensemble learning methods. For example, ensemble learning can be 
divided into homogeneous ensemble methods and heterogeneous 
ensemble methods. Base learners of the former group are identical, such 
as classification and regression trees (CARTs), while the latter group of 
methods have distinct base learners. According to the strategy, ensemble 
learning can be grouped into parallel ensemble and sequential ensemble. 
Parallel ensemble requests base learners to be independent, such as RF, 
while sequential ensemble relies on the dependence of base learners, 
such as GBM. In this section, the most popular ensemble methods are 
introduced, including RF, GBM, and hybrid models. Different types of 
ensemble methods are summarized in Table 7. 

RF is a kind of regression tree model that has a multitude of decision 
trees, each of which is built with a subset of training data with 
replacement. The final forecasting is obtained by taking the conditional 
mean of forecasts from decision trees. Therefore, forecasting results are 
more robust and accurate. For example, RF was found to outperform 
ANN in forecasting three components of solar irradiance in a location in 
France [170]. The nRMSE of RF ranged from 19.65% to 27.78% for 1HA 
to 6HA GHI forecasting. [171] compared 11 ML models in 1HA–6HA 
solar irradiance forecasting with different variability levels. RF provided 
satisfactory forecasts, especially for locations with higher variabilities. A 
total of 68 ML models were compared in [173] in 1HA GHI forecasting, 
where the RF models was found to be competitive in most cases. [184] 
included RF in the 1HA solar forecasting benchmarks using several 
publicly available datasets. 

Table 6 
Representative SVR solar forecasting papers.  

Reference Kernel Location Horizon Evaluation metrics 

[126] Linear Spain 1HA MAE=(49–64) W/m2 

[159] Linear/ 
RBF 

Multiple 
sites 

6HA SS = 17% 

[160] RBF Japan 15HA–33HA MAPE = 29.53% 
[161] RBF US 1HA–3HA MAE=(34.37–92.57) 

W/m2 

[162] RBF Taiwan 5MA–15MA MAPE=(20–22)% 
[163] RBF US 1HA nRMSE=(22.5–45.0)% 
[164] RBF Australia 5MA–30MA NA 
[165] RBF Korea 1HA RMSE=(49.26–62.57) 

W/m2 

[127] RBF Italy 12HA MAPE=(0.83–2.59)% 
[166] RBF China NA RMSE=(14.20–17.85) 

W/m2 

[167] RBF China 1DA nRMSE = 2.96% 
[168] RBF Iberia 1DA nRMSE = 22.54%  

Table 7 
Representative ensemble learning-based solar forecasting papers.  

Reference Method Location Horizon Evaluation metrics 

[170] RF France 1HA–6HA nRMSE=
(19.56–27.7)% 

[125] RF NA 1DA RMSE = 0.083–0.098 
[171] RF Multiple 

sites 
1HA–6HA nRSME=

(18.97–48.34)% 
[172] RF US 3HA MAE  = 2277.2 kJ 
[173] RF US 1HA nRMSE=

(25.83–33.44)% 
[88] GBM Japan 1HA–6HA RMSE=

(9.48–13.17)% 
[174] GBM US 1DA NA 
[125] GBM NA 1DA RMSE = 0.082–0.101 
[118] GBM NA 1DA NA 
[175] GBM Portugal 6HA SS=(1.4–5.9)% 
[176] GBM Singapore 1DA SS = 4% 
[177] GBM Portugal 24HA SS=(12.06–13.11)% 
[178] GBM US 1DA nRMSE=

(6.96–7.72)% 
[132] GBM US 5MA–30MA SS=(13–24)% 
[172] XBM US 3HA MAE  = 2190.9 kJ 
[179] ANN Australia 1DA MAPE = 3.1% 
[180] SVR-RF Australia NA RMSE = 0.0725 
[181] RLS-GBM Portugal 1HA–6HA SS=(8–12)% 
[103] ANN-SVR- 

RF-GBM 
US 1HA nRMSE = 9.74% 

[182] SVR-RF Multiple 
sites 

1HA nRMSE=
(8.18–34.35)% 

[183] SVR-ANN Australia 1DA RMSE = 0.2133 kW  
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GBM is a sequential ensemble method that also mainly uses decision 
trees as base learners. GBM works in the form of a numerical optimi-
zation problem where the objective is to minimize the loss of the model 
by adding weak learners using a gradient descent-like procedure. [132] 
found that GBM outperformed kNN and the persistence in 5MA–30MA 
GHI and DNI forecasting. [88] used GBM to forecast 1HA–6HA power 
output for 42 rooftop PV systems in Japan. In addition, feature contri-
butions were extracted from GBM models to analyze the feature 
importance. GBM was also reported to perform well for longer-term 
forecasting. In [178], GBM beat SVR in 1DA solar forecasting. GBM 
was also suitable and widely used for probabilistic forecasting. For 
instance, a GBM model was fit to predict each quantile ranging between 
5% and 95% with 5% increments in 6HA PV power output forecasting, 
which achieved 1.4%–5.9% improvements [175]. Similaly, GBM was 
used in [176] for solar irradiance quantile forecasting, which improved 
probabilistic forecasts by 4%. In addition, GBM was used to convert 
gridded solar irradiance that was predicted by NWP to probabilistic PV 
power output, which received more improvements (more than 12%) 
than directly predicting quantiles [177]. In the Global Energy Fore-
casting Competition (GEFCom), GBM was the most popular forecasting 
engine [185,118,186]. It is surprising that two other boosting algo-
rithms, i.e., adaptive boosting and extreme gradient boosting (XGB), 
were rarely applied in solar forecasting. 

Comparisons were also made among ensemble learning methods. For 
example, [125] found that RF performed better than GBM with limited 
data, but GBM was more accurate with more data in 1DA PV power 
output forecasting. [174] tested various ensemble learning methods, 
including GBM, RF, and other tree methods, in solar forecasting of 
Oklahoma gridded sites. Results showed that GBM had the lowest MAE. 
Three ensemble learning models, i.e., RF, GBM, and XGB, were 
compared in [172]. The more advanced ensemble learning method, 
XGB, outperformed others in solar forecasting tasks. 

Stacking is an ensemble learning technique that combines multiple 
models, which are trained based on a complete training set. Another 
model is trained on the outputs of the base level model as features. These 
models are sometimes referred as hybrid models. Stacking methods take 
advantage of multiple ML algorithms, which are more robust and ac-
curate than any single ML models. For example, [180] ensembled SVR 
results using RF for PV power output forecasting, which reduced fore-
casting error by 5%–9%. [185] stacked RF and GBM models to predict 
the probability distribution of PV power, which achieved a high ranking 
in the GEFCom. Four ANNs were used as base learners in [187] to 
forecast power output for a 10 Wp PV system. [182] averaged several 
models, including SVR and RF, in 1HA GHI forecasting, and found the 
ensemble models performed slightly better than single algorithm 
models. A set of ANN, SVR, RF, and GBM models were used as base 
learners, which were ensembled by another ML algorithm for 1HA GHI 
forecasting [103,105,104]. The ensemble model outperformed any base 
learner. Since base models are usually heterogeneous, therefore this type 
of ensemble has various combinations that are hard to list exhaustively 
in this review. More ensemble solar forecasting papers can be found in 
[188]. 

3.2.5. Deep learning-based solar forecasting 
Deep learning, a special branch of ML, is an emerging solar fore-

casting technique in recent years. Different from shallow learning 
methods, deep learning is a promising alternative to further improve 
forecast accuracy by its unsupervised feature learning, strong general-
ization capability and, and big-data training [40]. The most prevalent 
deep learning architecture in solar forecasting are LSTM and CNN. 

LSTM is a category of deep learning architectures that belongs to 
RNN. Different from FFNN, LSTM has feedback connections, allowing 
information persists, which brings breakthroughs and makes LSTM a 
natural choice for time series analysis, such as solar forecasting. LSTM 
was reported to outperform FFNN and SVR in forecasting the power 
output of a Canadian PV plant [190]. Similarly, LSTM was found to be 

18.34% more accurate than FFNN in [91]. The robustness of LSTM was 
verified in [194] by comparing LSTM to FFNN and GBM in 1DA GHI 
forecasting. [189] compared three deep learning models, i.e., LSTM, 
deep belief networks (DBN), and autoencoded-LSTM (Auto-LSTM), with 
MLP and a physical model. It was found that Auto-LSTM was the best- 
performing model in up to 2DA PV power forecasting. [191] found 
that LSTM performed better than another popular deep learning archi-
tecture, CNN, by 9%. Forecast accuracy could be significantly improved 
by applying LSTM to some datasets. For example, [192] reported that 
50.90%–68.89% forecasting skill scores of the LSTM model were ach-
ieved over the smart persistence. 

CNN is another popular deep learning structure for visual imagery 
analysis. CNNs capture spatial and temporal dependencies in images 
through filters. In solar forecasting, CNNs are used to provide forecasts 
through processing time series, images, or video streams. For example, 
[195] improved 15MA–2HA PV power forecast accuracy by up to 
61.42% with a 1D CNN that took time series data as inputs. [110] 
developed a deep learning network for solar forecasting, called the 
SolarNet, which took only one sky image as input and improved 10MA 
GHI forecast accuracy by 11%. In the following paper, they extended the 
SolarNet to intra-hour forecasting, which improved the accuracy by 25% 
[196]. [111] utilized both sky image video and time series data in their 
deep learning network, where input and output are optimally deter-
mined. The combination of CNN and LSTM is also a promising way to 
further improve solar forecast accuracy. For example, [198] confirmed 
that by stacking CNN and LSTM, the performance of the model could be 
enhanced. [197] also stacked CNN and LSTM sequentially, which 
improved 1DA forecast accuracy compared to CNN and LSTM. A similar 
CNN-LSTM architecture that took multi-variant input was proposed in 
[199], which outperformed CNN and LSTM models. A list of deep 
learning forecasting models are collected and grouped in Table 8. 

3.3. Summary 

In this section, AI-based solar forecasting is taxonomically reviewed 
by input data and ML algorithms. The efficient techniques that ensure a 
successful AI forecasting model lie in one or more of the following steps:  

• Feature engineering. The incorporation of data from diverse sources, 
such as endogenous time series, meteorological data, sky images, 
shadow images, and satellite observations, is important. Taking full 
advantage of these data is even more critical. For shallow ML, proper 

Table 8 
List of representative deep learning-based solar forecasting papers.  

Reference Method Location Horizon Evaluation metrics 

[189] LSTM German 24HA–48HA RMSE = 0.0713 
[190] LSTM Canada NA RMSE = 0.086 
[191] LSTM Japan 1MA–10MA SS = 21% 
[91] LSTM Cape Verde 1DA RMSE = 76.245 W/m2 

[192] LSTM Multiple 
sites 

1DA SS=(50.90–68.89)% 

[193] LSTM Egypt 1HA RMSE=(82.15–136.87) 
W/m2 

[194] LSTM Multiple 
sites 

1DA SS = 52.2% 

[195] CNN Belgium 15MA-2HA SS=(49.10–61.42)% 
[111] CNN US 15MA SS=(15.7–16.3)% 
[112] CNN US NA SS = 17.1% 
[110] CNN US 10MA SS = 11.88% 
[196] CNN US 10–60MA SS = 25.14% 
[197] CNN- 

LSTM 
NA 1DA MAE=(16.53–130.94) 

W/m2 

[198] CNN- 
LSTM 

Korea 1HA–6HA MAPE=(13.42–37.83)% 

[199] CNN- 
LSTM 

Australia 1DA MAPE=(2.2–11.2)% 

[200] CNN- 
LSTM 

US 1HA–4HA MAPE=(14.6–21.4)%  

C. Feng et al.                                                                                                                                                                                                                                     



International Journal of Electrical Power and Energy Systems 132 (2021) 107176

12

feature engineering, including feature extraction, selection, and 
construction, should be performed automatically with advanced 
algorithms.  

• Model optimization. The model selection and optimization are 
required to obtain optimal forecasts, including the consideration of 
weather and calendar effects, hyperparameter selection, and archi-
tecture optimization. Due to the complexity and heterogeneity of 
forecasting tasks, these processes should also be conducted with 
advanced optimization techniques.  

• Post-processing. Outputs of AI-based forecasting models should be 
processed to meet the operational requirements, including spatial 
or/and temporal reconciliation, clipping, and irradiance to power 
conversion. These processes should follow the requirements of spe-
cific power system operators, or else the application value of the 
forecasts will be suspicious. 

Future trends of the AI-based forecasting are identified by the latest 
papers and summarized as:  

• Sky, shadow, and satellite images. Different from time series, solar 
forecasting with image data is still less researched. Inclusion and 
optimization input combinations from various sources are expected 
to further improve AI-based forecasting performance.  

• Deep learning. Compared to shallow ML, the application of deep 
learning in solar forecasting is still at its early stage. The develop-
ment of deep learning techniques is expected to capture spatial and 
temporal patterns in multiple data sources in solar forecasting data in 
a more efficient way. Deep learning-based solar forecasting could 
advance or at least be competitive with shallow ML methods.  

• Probabilistic forecasting. Compared to load and wind forecasting, 
solar forecasting in probabilistic form is also lagging behind. Prob-
abilistic solar forecasting will help power system operators better 
manage uncertainties associated with forecasts, therefore, becoming 
an emerging topic and will be continuously under investigation. 

4. PV Array and Fault Detection 

Detection in solar energy is to identify unknown information. 
Detection tasks in solar energy mainly include PV array detection and PV 
fault detection, which are the focus of this section. Different from 
forecasting that generates continuous outputs, detection belongs to 
classification problems that output discrete results. Therefore, most 
papers use classification evaluation metrics, including (i) threshold 
metrics, such as accuracy, precision, recall, F1 score, and the Jaccard 
index, (ii) ranking metrics, such as the receiver operating characteristic 
(ROC) curve, and (iii) probabilistic metrics, such as the log loss and the 
Brier score. The definitions and formulations of detection metrics can be 
found in [201–203]. 

4.1. Array detection 

With the growing penetration of distributed PV, there is a strong 
interest among government and utility decision-makers in obtaining 
detailed information about rooftop PV [204]. This is due to that the key 
data of distributed PV systems maybe only partially known or 
completely absent [214,215], which is different from large utility-scale 
PV plants whose specifications are known by the commercial forecaster 
and system operator. Even though utilities typically require permits and 
enforce interconnection requirements for installing these behind-the- 
meter (BTM) solar generation [216] to reduce risks, the number of un-
registered or unknown BTM PV systems is significant for a variety of 
reasons. For example, the installations may be made prior to regulations 
being enacted. Not all the BTM PV owners are aware of the rules, or 
some owners want to avoid permitting fees. There is also the possibility 
of having discrepancies between the reported and the installed config-
urations [217]. In recent years, AI methods make it possible to non- 

intrusively detect PV installations through remote sensing data. 
Table 9 lists PV array detection papers that rely on AI methods. 

Like AI research in forecasting, shallow ML was first adopted, which 
needed to explore proper input features. For example, [204] first built an 
SVR model that learned from color, shape, and texture of 100 aerial 
images to detect PV objects. The classifier was able to identify if a PV 
object exists in an image by a 94% accuracy. Different features were 
extracted from aerial images, including raw pixels, local color statistics, 
and textons to detect the PV pixels [205]. It was found that the combi-
nation of local color and texture yielded the best detection based on the 
ROC curve. Then, the pixel means and variances of different sizes of 
windows were used as input to RF models for PV pixel detection in 
[206]. The detection accuracy was 90%, which was satisfactory 
considering the large dataset (i.e., 135 km2 images). 

With the prevalence of deep learning, PV array detection accuracy is 
significantly improved. Deep learning models, mainly CNNs, learn pat-
terns and features from image automatically without heavy feature en-
gineering. A CNN with only 3 convolutional layers achieved 98% 
accuracy by learning from 3,347 low-quality Google satellite images 
[208]. [209] developed a faster region-based convolutional neural 
networks (RCNN) based on only 800 200× 200 images, which suc-
cessfully detected PV objects with a 0.9299 precision. A 12-layer CNN 
model was reported to perform better than an RF model with fewer false 
alarms. The precision of CNN model is 70%, which was a significant 
improvement compared to the 10% precision of an RF model [207]. A 
few advanced deep learning architectures were applied in PV array 
detection. [210] developed the Visual Geometry Group (VGG) model for 
PV detection and found that transferring the pre-trained weights to a 
CNN, i.e., VGG, did not help improve the detection accuracy. The VGG 
model with random weight initialization achieved the best precision. 
[212] advanced PV array detection from PV object classification to PV 
pixel semantic segmentation. A SegNet model was developed based on 2 
million images and outperformed the VGG model. 

Before applying PV array detection models to large-scale real-world 
detection, a model generalization should be first evaluated, especially 
with the fact that there is wide variability in the visual characteristics of 
remote sensing imagery across different geographic locations. [218] 
trained CNNs with images of California, which was used to detect PV 
arrays in Connecticut. It was found that by using only a small number of 
images (i.e., 15 km2) for fine-tuning, the detection precision was 0.88. 
[211] developed a CNN encoder-decoder architecture with three mod-
ules, which are feature refinement residual module, chained dilation 
attention module, and global channel attention module. The developed 

Table 9 
AI-based PV array detection papers.  

Reference Method Input Output Evaluation 

[204] SVM Aerial image PV 
object 

Accuracy =
0.94 

[205] RF Aerial image 
features 

PV pixel ROC curve 

[206] RF Aerial image 
features 

PV pixel Accuracy =
0.90 

[207] CNN Aerial image PV 
object 

Accuracy =
0.90 

[208] CNN Aerial image PV 
object 

Accuracy =
0.87 

[209] CNN (Faster- 
RCNN) 

Aerial image PV 
object 

Precision =
0.93 

[210] CNN (VGG) Aerial image PV 
object 

Precision =
0.95 

[211] CNN Aerial image PV pixel Precision =
0.94 

[212] CNN (SegNet) Aerial image PV pixel ROC curve 
[35] CNN Aerial image PV pixel Precision =

0.93 
[213] CNN Aerial image PV 

object 
Precision =
0.91  
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method learned from 223 images from 7 provinces of China and yielded 
better performance than several famous CNN architectures, including 
UNet and LinkNet. [219] applied CNNs for PV array detection on a large 
aerial imagery dataset comprised of two nearby U.S. cities. The results 
indicated that substantial quantities of local training data are needed to 
perform well in a new location, but far less than the size of a full training 
dataset. [35] developed a deep learning framework, called the Solar-
Forecast, to automatically localize solar PV panels in the U.S. The CNN 
model was trained with 366,467 images sampled from over 50 cities/ 
towns across the U.S., which achieved a precision of 93.1% in residential 
areas and a 93.7% precision in non-residential areas. 

4.2. Fault detection 

Faults in any components of a PV system can significantly affect the 
efficiency and security of the PV plant and the economic and reliable 
power system operations, which makes PV fault detection (FD) an 
important task in monitoring the PV system performance. Due to 
shading effects, module soiling, PV modules aging, and others, all the PV 
system components, such as modules, cabling, protections, converters, 
and inverters, are subject to failures [50]. The main catastrophic failures 
in PV arrays include: single-line to ground, line-to-line, line-to-line-to- 
ground, and 3-phase fault.2 FD usually includes fault identification, 
diagnosis, and localization, which are used to identify, recognize, and 
localize faults in a PV system, respectively. 

Different from FD methods that are based on PV electrical circuit 
simulation and electrical signal processing, AI-based FD learns from 
meteorological, electrical data, and images, which does not require prior 
knowledge of the PV system, such as system parameters and mathe-
matical formulations. AI-based FD models are faster, more accurate, 
more flexible, and more scalable. Typically, there are two categories of 
AI-based FD methods: regression methods and classification methods. 
The former approaches identify faults by estimating system parameters 
using AI methods, which are used to compare with measurements. 
Classification methods directly classify fault types without knowing the 
monitoring parameters. Both approaches are effective and efficient in 
FD. Table 10 listed the recent two groups of AI methods for FD, where 
the output of fault type indicates FD classification methods and others 
are FD regression methods. 

Theoretically, all the methods in Section 3 could be used in FD 
regression methods. However, most papers used ANN in this task. For 
example, a two-layer ANN was applied to predict the power from a PV 
system, from which the open-circuit voltage and short circuit current 
were derived and used to identify six fault types [222]. Similar work was 
shown in [223], where an ANN model was used to estimate the power 
output from irradiance, wind, and temperature. Then, system outages 
and other faults causing a reduction in power were detected from esti-
mated and measured power. [220] optimized the ANN topology by GA, 
which was used to detect five fault types with a 90% accuracy. 

Another similar way to use AI for FD is optimizing the mathematical 
model by numerical AI algorithms, which can better monitor the PV 
system. For example, an ANN model was used to correct the power es-
timates of a one diode model [226]. The improved power output esti-
mation could be used to better identify specific faults. 

To better identify and localize faults in PV systems, multiple AI 
models are required to monitor different signals. For example, twelve 
three-layer ANNs were used to monitor the 6 voltage and 6 current of a 
3× 2 PV system [227]. The method was able to identify the short-circuit 
location of PV modules in one string independently by the control rule. 
In [221], ANN models were found to have less learning time, high ac-
curacy, and lower memory consumption while conducting FD based on a 

ZigBee wireless sensor network. The faulty operating state of a partially 
shaded PV module was detected by ANNs from irradiance and temper-
ature. Four common faults of PV arrays, including the degradation fault, 
short-circuit fault, open-circuit fault, and partial shading condition, 
were diagnosed by an ELM model from key points of I-V curves [231]. A 
similar RBF ELM model was proposed in [232] to identify three types of 
faults. 

Among FD classification methods, [229] identified and diagnosed 9 
types of faults in a PV system using a 2–2-9 ANN architecture from 
irradiance and temperature with a 92.1% accuracy. [228] built a four- 

Table 10 
AI-based fault detection papers.  

Ref. Method Input Output Evaluation 

[220] ANN Irradiance, 
temperature 

Power Accuracy=
(96.2–98.9)% 

[221] ANN Irradiance, 
temperature 

Power Accuracy = 100% 

[222] ANN Irradiance, 
temperature 

Power NA 

[223] ANN Irradiance, wind, 
temperature 

Power NA 

[224] ANN Weather forecasts, 
power 

Power nMAE=
(2.17–15.78)% 

[225] ANN Irradiation, 
temperature, 
current, voltage, 
power 

Voltage, 
current 

MAE=(0.0667–0.52) 
A 

[226] ANN Irradiance, 
temperature 

Power error 
correction 

FP = (4.98–11.52)% 

[227] ANN Irradiance, 
temperature 

Voltage, 
current 

NA 

[228] ANN Irradiation, 
temperature, 
current, voltage, 
power 

Fault type Accuracy = 98.53% 

[229] ANN Irradiance, 
temperature 

Fault type Accuracy = 92.1% 

[230] ANN Irradiation, 
temperature, 
current, voltage 

Fault type Accuracy=
(82.34–98.19)% 

[231] ELM Current, voltage Fault type Accuracy=
(99.77–99.40)% 

[232] ELM Current, optimal 
fitness value, 
resistence 

Fault type Accuracy=
(93.55–97.25)% 

[233] SVM Power Fault type Accuracy=
(68.0–75.8)% 

[234] SVM Current, voltage Fault type Accuracy=
(91.40–94.74)% 

[235] DT Irradiation, 
temperature, 
current, voltage 

Fault type Accuracy=
(93.56–99.99)% 

[236] DT Irradiation, 
temperature 
ambient, power ratio 

Fault type Accuracy=
(99.80–99.86)% 

[237] RF Current, voltage Fault type Accuracy=
(99.095–99.224)% 

[238] kNN Irradiation, 
temperature, 
current, voltage 

Fault type Accuracy = 98.70% 

[239] LSTM Current, voltage, 
power 

Fault type Accuracy=
(97.66–100)% 

[240] CNN Irradiation, 
temperature, 
current, voltage 

Fault type Accuracy=
(88.852–98.774)% 

[241] CNN Electrical time series 
graph 

Fault type Accuracy=
(99.03–99.51)% 

[242] CNN- 
SVR 

Aerial image Fault type Accuracy = 90.23% 

[243] CNN Aerial image Fault type Accuracy>95%  
[244] CNN Aerial image Fault type Accuracy = 98.7% 
[245] CNN Infra-red image Fault type F1 = 0.65–0.69 

Note: NA indicates that the overall performance of the detection was not pro-
vided in the paper. FP–false positive. 

2 There are other ways to categorize catastrophic faults. For example, in Refs. 
[50,246], catastrophic faults are grouped into line-to-line, ground, and arc 
faults. 
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layer ANN model to classify line-line faults from irradiation, tempera-
ture, current, voltage, and power of the PV system with a 98.53% clas-
sification accuracy. Two ANN models were built in [230], one of which 
was for fault detection and the other one was for diagnosis. Both models 
took irradiation, temperature, current, and voltage as inputs, while the 
detection model output the binary conditions (i.e., faulty or healthy 
state) and the diagnosis output the fault type. 

Besides ANN models, other AI algorithms are also applied in FD 
classification methods. For example, an SVM was used in [233] to learn 
the influence of blocking diode short-circuits on the PV power output, 
which achieved up to 75.8% accuracy. A stacked two-stage SVM clas-
sifier was used to efficiently detect line-line faults in a PV system under 
different operating conditions with minimum data [234]. A DT model 
was used in [235] to classify fault types with an accuracy of up to 
99.98%. The DT achieved 99% in identifying fault types by using irra-
diation, temperature ambient, and power ratio. [237] classified four 
types of faults, i.e., line-line faults, degradation, open circuit, and partial 
shading, in a PV system using an RF model that only considered current 
and voltage with more than 98% accuracy. kNN is also adopted in PV 
FD. [238] applied kNN in detecting and classifying open circuit faults, 
line-line faults, partial shading with and without bypass diode faults, 
and partial shading, by using irradiation, temperature, current, and 
voltage, with a 98.70% accuracy. 

Deep learning techniques are popularly employed in FD. For 
example, [239] used LSTM as feature extractors to construct features 
from current, voltage, and power for fault detection. The classification 
accuracies of normal condition, line-to-line fault, and hot spot fault were 
99.23%, 98.78%, and 97.66%, respectively. A deep residual network 
(ResNet) was developed in [240] to classify 8 types of faults with a 
95.778% accuracy. [241] transformed PV electrical time series data into 
graphs, which were used in CNN models for fault classification. The 
accuracy of the developed method was over 99%. 

Most image-based FD methods utilize deep learning architectures, 
which is promising for large-scale detections. However, this special 
group of methods require sensors with high cost and sometimes cannot 
monitor the PV system continuously. For example, a series of work 
focused on detecting visible defects in PV modules, include dust- 
shading, encapsulant delamination, gridline corrosion, snail trails, and 
yellowing [242–244]. Aerial images were collected by an unmanned 
aerial vehicle (UAV) and labeled thereafter, which were used to train 
CNN models. The developed optimal CNN architecture achieved over 
97% accuracy. In [245], more advanced images, namely, the infrared 
aerial images, were collected by a UAV, which could detect invisible 
defects. 

4.3. Summary 

In this section, AI-based PV array detection and PV fault detection 
are extensively reviewed. In both applications, deep learning techniques 
show promising and leading potentials in terms of accuracy and scal-
ability, which will still be the future trend. The research in these fields 
could be further advanced by improvements from the following 
perspectives:  

• Datasets. Compared to similar work, such as forecasting, publicly 
available datasets for detection in solar energy field are limited. 
There is only one open-source dataset for PV array detection, only 
covering 4 cities in California. The dataset for PV fault detection is 
even rare. This is mainly due to the significantly more effort required 
to collect, process, and label the dataset.  

• Deep learning. Image-based detection is possibly one of the areas 
that could benefit the most from deep learning techniques. As com-
puter vision is one of the most promising deep learning application 
fields, both PV array detection and PV fault detection could be 
further improved by employing popular deep learning architectures 
and methods.  

• Application value. The application value of the two research topics, 
especially the PV array detection, is underestimated. It will be 
interesting to further explore the utilization of PV installation in-
formation in power system real-time operations. 

5. Design optimization 

Optimization is a promising approach worthy of study that aims to 
improve the system operation and enhance the economic benefit for PV 
systems. Compared with gradient-based and heuristic approaches, the 
metaheuristic algorithm is a high-level problem-independent stochastic 
method, which has been extensively employed to solve highly nonlinear 
and multi-modal problems under various complex constraints. Note that 
there are still debates on whether the metaheuristic algorithm belongs to 
AI, and it is noticed that several review papers directly include meta-
heuristic learning as one form of AI algorithms [45,43,48]. There also 
exist several review papers, covering a broader topic of hybrid energy 
systems and optimization methodologies [247,248]. In this review 
paper, we focus on AI-based optimization that is applied to PV systems. 

5.1. Sizing optimization 

The PV sizing problem mainly emphasizes the power balance in a 
stand-alone hybrid system that is composed of various kinds of energy 
sources, such as PV, wind, battery, diesel, and fuel cell. The sizing 
optimization is to optimize the size of different energy components to 
achieve the goal of reducing the cost and improving the supply reli-
ability. Several typical PV sizing optimizations with heuristic algorithms 
are summarized in Table 11, which includes critical information of the 
optimization problems. Since most optimization approaches follow a 
standard optimization procedure (i.e., problem formulation, solver, and 
solution) [249], this section reviews AI-based PV system design opti-
mizations from the perspectives of objective, design variable, constraint, 
and optimizer. 

5.1.1. Objective function and design variable 
Optimization goals are represented by objective functions, and 

several objectives in PV system optimization have been used in the 
literature: (i) the total cost that consist of initial investment, operation 
cost, and maintenance cost of the whole hybrid system, (ii) reliability 
metrics, such as the loss of power supply probability (LPSP), the loss of 
load probability (LOLP), and the loss of energy expectation (LOEE), as 
defined and highlighted in Table 12, iii) environmental benefits, such as 
the fuel consumption, CO2 emission [255], and renewable factor. For a 
single-objective optimization problem, the total cost is usually selected 
as the objective function, in which two indices are optimized: the total 
system cost (TSC) of the estimated entire lifetime and the total annual 
cost (TAC). For example, the TSC in [251] consisted of the equipment 
cost, load curtailment cost, manufacturing cost of microgrids, and rev-
enue of the power sale to the main grid; while [266] utilized TAC that 
consisted of the annual capital cost and annual maintenance cost as the 
optimization objective. 

In some circumstances, it is insufficient to only consider the eco-
nomic performance. Therefore, a multi-objective optimization approach 
considering the economic performance, reliability, and environmental 
impacts is of great significance to yield a balanced optimal solution. A 
multi-dimensional Pareto frontier of the targeted objectives can be 
generated, in which various optimal solutions with different emphases 
and weight factors can be selected based on different conditions. For 
instance, [254] considered both the TSC and LPSP for the PV-wind- 
battery system, which yielded a Pareto frontier as the final output. 
[267] extended the framework to several seasonal weather conditions, 
and generated several Pareto frontiers with different scenarios. [265] 
took into account the TAC, LPSP, and renewable factor as the objectives 
for a hybrid system, and solved the multi-objective optimization with a 
weighted sum method. [268] used a metaheuristic algorithm to 
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determine the optimal number and type of renewable energy units by 
minimizing both the total system cost and the emissions of a stand-alone 
hybrid wind-PV-diesel energy system. To avoid unnecessary calculation 
of the entire Pareto frontier, as long as the weight factors of different 
objectives are empirically predefined, the multi-objective problem can 
be transformed into a single objective problem. (Note that if the sum of 
the weight factors equals to one, the solution is a subset of the original 

Pareto frontier.) For example, [269] considered the pollution of fuel 
emission as a social cost and combined it with the annual financial cost 
with different coefficients to optimize the real-time operation sched-
uling for a hybrid system. 

For design variables, it is seen from Table 11 that the majority of the 
reviewed papers have optimized sizing parameters of hybrid systems, 
such as PV installation capacity, PV panel area, battery capacity, wind 
turbine capacity, wind turbine swept area, and the sizing of other 
auxiliary subsystem or components [248]. The number of design vari-
ables highly depends on the assumptions and complexity of the studied 
case. 

5.1.2. Constraint 
In an optimization problem, constraints are retained to guarantee 

feasible solutions based on prerequisites and natural characteristics. For 
metaheuristic algorithms, it is necessary to identify the feasibility of 
every attempt before calculation to save computational cost. The most 
widely-employed constraints for the PV sizing problem are based on the 
power balance, design variable boundaries, economic limitations [270], 
reliability, voltage profile limitations, and environmental impacts [252], 
as summarized in Table 12. For instance, [266] introduced a constraint 
of LPSP to minimize the TAC, and the optimal results showed that the 
LPSP was satisfied in its lower boundary, indicating reasonable reli-
ability performance. [271] minimized the cost of energy and the LOLE 
by putting a maximum constraint of the LOLE to guarantee the reli-
ability and stability of the hybrid system. Similarly, [272] included the 
TAC, LOEE, and LOLE in the objective function with a reliability 
constraint of ELF. Results indicated the costs of the system depended on 
the reliability and the outage probability of major components. 

It is worth mentioning that the aforementioned objectives and con-
straints are interchangeable in some cases according to the decision- 
making process. For instance, the reliability index LPSP in [273] is 
considered in the objective together with the energy cost, while LPSP is 
treated as a constraint with LLP in [256] to minimize the TSA. 

Table 11 
Typical PV sizing optimizations using metaheuristic algorithm  

Reference Types Decision 
variables 

Objective 
(s) 

Solver 
(s) 

Highlights 

[250] • PV • PV 
installation 

• Total 
system cost 

PSO  

• Wind • Wind 
turbine size 

• Uncertainty 
and reliability 
evaluation 

•
Battery 

• Battery 
capacity 

• Optimal 
installations of 
different 
energy sources  

• Sizing of 
other 
components  

[251] • PV • PV 
installation 

• Total 
annual cost   

•
Battery 

• Wind 
turbine size 

PSO • PSO is faster 
than GA 

• Fuel 
cell 

• Fuel cell 
size  

GA • Hybrid 
system optimal 
sizing 

• Wind • Sizes of 
other 
components    

[252] • PV • PV 
installation 
size 

• Total 
system cost 

Markov- 
based 

• The Markov- 
based GA 
provided 
competitive 
computational 
cost 

•
Diesel 

• Diesel 
generator 
size  

• Different 
constraint 
scenarios 
consist of LPSP 
and emission 

• Wind • Wind 
turbine size   

[253] • PV • PV 
installation 
size 

• Total 
annual 
costs 

PSO/ 
IPSO/ 

• Eight 
metaheuristic 
algorithm were 
tested 

•
Battery 

• Battery 
capacity 

GA/ 
ABSO/ 

• ABSO yielded 
more 
promising 
results 

• Wind • Wind 
turbine size 

TS/SA/ 
HS  

[254] • PV • PV 
module size 

• Total 
system cost 

GA • Pareto 
frontier 

• Wind • Wind 
turbine size 

• Loss of 
power 
supply 

•
Battery 

• Battery 
capacity 

probability 
(LPSP)  

• Regulator, 
inverter  

[255] • PV • PV 
installation 
size 

• Total 
system cost 

MOPSO- • Developed 
for mobile 
microgrid 
(ship) 

•
Diesel 

• Diesel 
generator 
size 

• Diesel 
generator 
emission 

NSGA-II • PV/diesel/ 
battery is 
better than PV/ 
diesel 

•
Battery 

• Battery 
capacity     

Table 12 
Representative PV sizing objective functions and constraints  

Definition Explanation and highlight Reference 

Loss of power supply 
probability (LPSP) 

• The ratio of the power supply from a 
combined (PV and other renewable 
resources) system that is not able to 
supply the load 

[256,257] 

• The most popular evaluation index  
Loss of load probability 

(LOLP) 
• The ratio of total energy deficit to total 
load demand 

[253] 

• Occurs when the demand surpasses the 
generation capacity 

[258] 

Loss of energy 
expectation (LOEE) 

• The expected energy that has not been 
supplied  
• Occurs when the generation capacity is 
not able to meet the hourly load demand 

[259] 

Expected energy not 
supplied (EENS) 

• The expected energy that is not 
provided to the load 

[260] 

•Occurs when the load demand exceeds 
the available generation capacity 

[261]  

[262] 
Equivalent loss factor 

(ELF) 
• The ratio of effective load outage hours 
to the total number of hours 

[263] 

• Contains information about both the 
number and magnitude of outages for a 
stand-alone network  

Deficiency of power 
supply probability 
(DPSP) 

• The ratio of all deficiency of the power 
supply values to the overall load demand 
for a given period  
• Highlights the insufficient power supply 
conditions 

[264] 

Renewable factor (RF) • The ratio of renewable energy to the 
overall energy  
• Effective in the cases with diesel 
generators or grid-connected networks 

[265]  
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5.1.3. Optimizer 
Because of the complexity and non-convexity of the objective func-

tions and constraints, metaheuristic algorithms are widely employed for 
PV sizing optimization, while deterministic searching and gradient- 
based optimization methods are inefficient in certain circumstances. 
Metaheuristic algorithms attempt to explore the searching space to 
select the best or a sufficiently good and feasible solution among all 
possible candidates in a stochastic manner. Several methods have been 
proposed to classify existing metaheuristic algorithms with respect to 
their properties, e.g., local search or global search, single or population- 
based, nature-inspired or metaphor-based algorithms [274,275]. In this 
paper, we attempt to classify metaheuristic algorithms based on the 
approaches to update candidate solutions [276], as categorized in Fig. 6. 

Local search metaheuristic algorithms achieve the optimal or near- 
optimal solution by searching, replacing, and iterating from a single 
current solution around its neighborhood. This type of algorithm is a 
trajectory-based method that starts with a complete solution and im-
proves the current solution within the smallest local moves by 
employing either the steepest descent or first moving strategy, in which 
the best move or the first better solution is selected, respectively. Pop-
ular local search algorithms include the variable neighborhood search 
(VNS) that considers a sequence of moves, simulated annealing (SA) that 
selects the next solution randomly, and tabu search (TS) that deals with 
their neighborhood. Because of their limitation in computational effi-
ciency, their application in PV sizing optimization are relatively less 

popular compared to other metaheuristic algorithms. For instance, 
[277] employed SA to minimize a hybrid system’s total cost considering 
the PV size, wind installation capacity, and battery size. Results showed 
that SA obtained a better result than the response surface methodology. 
To accelerate the convergence, local search algorithms can be used in 
conjunction with other direct searching or metaheuristic methods. For 
example, [270] compared the performance of both the TS and SA al-
gorithms for the optimal sizing problem of a renewable-based autono-
mous power system. To expedite the process, a hybrid SA-TS algorithm 
was proposed by using SA to find an initial region and using TS to further 
improve the optimal solution. 

Constructive metaheuristic algorithms start with an empty solution 
and construct solutions from their constituent elements. By adding the 
best possible elements during each iteration using a greedy algorithm, 
follow by a local search step, this type of algorithm is more efficient than 
the aforementioned local search algorithms in some cases [278]. The 
greedy randomized adaptive search procedure (GRASP) and ant colony 
optimization (ACO) are two of the most common constructive meta-
heuristic algorithms. Only ACO is reported in the literature for PV sizing 
optimization. For example, [279] employed ACO to perform sizing op-
timizations for three renewable energy systems including a hybrid sys-
tem, a solar standalone system, and a wind standalone system. Results 
showed the final optimal solution and computational efficiency were 
promising. [280] also utilized the ACO algorithm to perform PV-related 
sizing and performance analysis of a PV-wind-battery hybrid energy 

Fig. 6. Metaheuristic learning applied to PV system optimization (the most prevalent algorithms are in black).  
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system. The obtained optimal configuration was found to provide the 
minimal energy cost with excellent performance and reduced unmet 
load. Moreover, an improved ACO algorithm was proposed by [281] to 
shorten the computational time by selecting highlighted routes instead 
of all possible routes. The authors proved that decreasing the system cost 
and increasing the system reliability were conflicting with each other. 

Population-based metaheuristic algorithms search near-optimal so-
lutions by iteratively selecting and combining existing solutions using 
population characteristics. This type of algorithm is memory-based, 
which stores and compares solutions between the current step and the 
previous step. Except the algorithms discussed above, the rest heuristic 
algorithms can be categorized into this class. Popularly-used population- 
based metaheuristic algorithms include genetic algorithm (GA), particle 
swarm optimization (PSO), harmony search (HS), and cuckoo search 
(CS), [282], as summarized in Fig. 6. 

Population-based algorithms have been widely employed in PV 
sizing optimization. For example, GA is an evolutionary algorithm that 
usually starts from a population of randomly generated individuals, 
followed by an iterative process of selection, crossover, and mutation 
until the solution converges. [283] employed GA to optimize the sizes of 
PV, wind, and battery, and found that a combination of different battery 
types is not favorable. [252] used GA to minimize the total cost while 
retaining the reliability with an LPSP constraint. The results showed that 
PV-wind hybrid systems featured lower system costs compared to PV- 
alone or wind-alone cases. [284] also used GA to obtain the optimal 
PV size in a grid-connected system. The study highlighted the effects of 
price fluctuation in a time-of-use tariff structure. 

PSO is another nature-inspired well-known algorithm with fewer 
control parameters than GA, in which particles search through the 
problem space by following the current optimum particles and their own 
best historical solutions. For instance, [251] utilized PSO as an optimizer 
for the sizing of a PV-based hybrid system. [285] first optimized the size 
of a hybrid system with the standard PSO algorithm. Then to further 
evaluate the performance of PSO, several variants of PSO in terms of 
modification (MPSO), repulsion factor (PSO-RF), constriction factor 
(PSO-CF), and adaptive inertia weight (PSO-W), were compared and 
found that PSO-CF produced more promising results. [286] proposed a 
meta-PSO algorithm for sizing and results showed that the total cost of a 
hybrid wind-PV system was lower than that of a stand-alone wind or PV 
system. 

Applications of other population-based metaheuristic algorithms are 
summarized as follows. The imperialist competitive algorithm (ICA) 
[259] was adopted to determine the optimal sizes of autonomous and 
non-autonomous hybrid green power system equipment by considering 
economics, reliability indices, and environmental emissions. It proved 
that purchasing grid-connected power resulted in a lower overall effi-
ciency of the non-autonomous system. By modifying crossover and 
mutation operators of the crow search algorithm (CSA), an improved- 
CSA was developed to improve the load supply reliability by [287]. It 
was also reported that the improved-CSA performed better than both 
CSA and PSO. [288] proposed a new sizing approach based on the 
cuckoo search (CS) algorithm for grid-connected PV-wind-battery 
hybrid energy systems. It proved that CS had better accuracy, faster 
convergence, and less computation time compared to PSO. 

Moreover, several specific hybrid algorithms were developed by 
combining two or more metaheuristic algorithms, which were mainly 
used to solve multi-objective optimization problems. For example, [262] 
utilized a hybrid big bang-big crunch theory (H-BB-BC) for optimal 
sizing of a stand-alone PV-wind-battery hybrid system. By taking 
advantage of the PSO capacities and a mutation operator, the algorithm 
was able to improve the exploration ability of the BB-BC algorithm and 
avoid trapping into local optimums. The results showed that the H-BB- 
BC algorithm was better than both the PSO and discrete harmony search 
(HS) algorithm. [255] used a multi-objective particle swarm optimiza-
tion (MOPSO) algorithm combined with the non-dominated sorting 
genetic algorithm (NSGA-II) to solve the optimal sizing problem with 

respect to the investment cost and greenhouse gas emission. It revealed 
that the acquired net present cost of a hybrid PV-diesel-battery was less 
than that of a PV-diesel system. 

It is important to note that although several comparative studies 
have been performed for metaheuristic algorithms regarding the 
convergence and computational efficiency, it is still insufficient to draw 
a safe conclusion for the ranking of various metaheuristic algorithms. 
The selection of a proper metaheuristic algorithm for the sizing problem 
of a PV-contained hybrid system highly depends on the assumptions and 
setting conditions. 

5.2. Sizing and siting optimization 

Compared to the aforementioned PV sizing, PV sizing and siting need 
to consider the topology impacts of renewable sources on a specific 
stand-alone or grid-connected energy system. In sequence, siting infor-
mation is added to the design variable group, making the optimization 
problem more complicated and challenging. It is noticed that a large 
number of studies with metaheuristic algorithms have been performed 
in recent years, seeking to mitigate negative effects of high PV pene-
tration or improve the economic efficiency by jointly optimizing the 
sizing and siting of distributed renewable energy systems [289]. This 
section is organized based on applications. 

5.2.1. Pure PV 
Due to the uncertain and variable characteristics of PV energy, only a 

small number of studies have been performed on sizing and siting 
optimization for systems that only have PV. For instance, [290] pre-
sented a GA-based approach to optimize the sizes and sites of solar panel 
units to minimize the power loss and improve the voltage profile. [291] 
determined the optimal penetration of PV units in the IEEE 37-bus 
network by using GA, while considering multiple buses integration 
under different scenarios. [292] presented a method to determine the 
size and placement of PV for a real 162-bus electric distribution network 
using GA. This study attempted to improve the current system by 
minimizing the total power loss and voltage deviation. 

5.2.2. PV and battery 
The PV-battery hybrid system is one of the most common settings, in 

which the battery is employed to mitigate the power unbalance between 
PV generation and load profile. For example, [293] proposed to use a 
unified PSO algorithm to determine the optimal sizing and siting of a 
battery storage system based on different PV penetration scenarios in the 
IEEE 33-bus system. [294] used a GA-based bi-level optimization 
method to reduce voltage fluctuations caused by high PV penetration, 
via optimizing the capacity and installation locations of a PV-battery 
energy system in a grid-connected power network. The approach yiel-
ded consistent solutions, and the achieved optimal sizing and siting were 
validated with the IEEE 8500-node test feeder. 

5.2.3. Other hybrid system 
Besides battery systems, PV also combines with other energy re-

sources like wind, fuel cell, and diesel generators. For instance, [295] 
optimized the sizes, sites, and schedules for an off-grid hybrid system by 
using a two-staged PSO algorithm. The comparisons among three sce-
narios, i.e., diesel-only generator, diesel-PV, and diesel-PV-battery, 
revealed that the diesel-PV-battery system yielded the lowest cost 
while retaining voltage constraints. [296] presented a multi-objective 
optimization for the sizing and siting of a PV-wind-fuel cell hybrid en-
ergy system in a 70-bus system. An improved honey bee mating opti-
mization (HBMO) algorithm was utilized and compared with GA, PSO, 
and TS algorithm. Results showed that proper siting and sizing are 
important for improving the voltage profile, reduce costs, emission, and 
losses of a distribution system. [297] presented a new hybrid grey wolf 
optimizer (GWO)-PSO technique to optimally allocate the size of PV and 
other distributed resources in order to reduce power losses. The 
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approach yielded better performance compared to conventional PSO 
and GWO, and was validated in IEEE 33-bus and 69-bus systems and a 
78-bus real distribution system. 

5.2.4. PV and electric vehicles 
Moreover, the sizing and siting of electrical vehicles (EVs) charging 

stations have also been considered together with PV and other renew-
able energy resources. The EV charging load has a different profile 
compared to the conventional load profiles. An appropriate sizing, 
siting, and scheduling setting play an important role in system reliability 
and economic efficiency. For example, [298] proposed a GA-PSO-based 
optimal planning strategy, using varying renewable energy sources (PV- 
wind) to meet additional EV charging demands. The approach aimed to 
reduce power losses, voltage fluctuations, charging and demand sup-
plying costs, and EV battery costs. Case studies on the IEEE 33-bus 
system proved the effectiveness of using GA-PSO to determine the 
optimal siting and sizing of PV, wind turbine, and EV charging stations 
simultaneously. Similarly, a multi-objective optimization was per-
formed by [299] in 69-bus and 94-bus microgrids and solved using 
differential evolution (DE) algorithm. Results showed that both the 
optimal sizing and siting of PV-wind-EV charging station, as well as the 
optimal EVs charging schedules, helped improve the system 
performance. 

5.3. Summary 

In this section, the sizing and siting optimization for PV or PV-related 
hybrid systems are comprehensively reviewed. Research trends 
regarding PV sizing and siting could be briefly summarized as follows:  

• Sizing. The sizing optimization usually involves with other types of 
renewable energy sources in a standalone system or grid-connected 
network if electricity power exchange is allowed. Both economic 
and reliability objectives need to considered during the optimization. 
Convergence and computational efficiency of different metaheuristic 
algorithms are highly dependent on detailed system conditions and 
parameters.  

• Siting. The siting problem needs to be evaluated specifically based on 
different networks. Generally, a more complex network will enable a 
more complicated optimization problem. These challenges require 
more powerful solvers to reduce the computational cost, which af-
fects the wide applications of metaheuristic algorithms. 

Two aspects need to be improved in future studies.  

• EVs. The rapid growth of EVs may raise new challenges for the sizing 
and siting problem in a hybrid energy system. The research on PV 
sizing and siting needs to be further enhanced by considering a larger 
power network with more distributed energy resources.  

• Hybrid metaheuristic algorithms. Large-scale power networks tend 
to be employed in the sizing and siting optimization, which requires 
more powerful solvers with fast convergence and high accuracy. 
Though, the continuing improvements in modified and hybrid met-
aheuristic algorithms would benefit PV applications. 

6. Optimal control 

PV-relative control is a wide topic that involves PV power generation 
system and the controls of its relative devices and equipments like 
inverter and transformer. The Maximum power point tracking (MPPT) is 
one of the most important control process in PV systems. Extensive 
studies have found that the performance and efficiency of PV modules 
are highly affected by irradiation, ambient temperature, and load pro-
files [300]. To enhance the energy harvesting efficiency, it is important 
to accurately achieve MPPT under both normal uniform irradiation 
conditions and partial shading conditions. A large number of algorithms 

have been developed for MPPT, such as incremental conductance (INC), 
perturb and observe (P&O), open-circuit voltage method, and look up 
table method [301]. This paper mainly reviews the AI-based MPPT 
algorithms. 

6.1. Fuzzy logic control 

One of the most significant advantages of fuzzy logic control (FLC) is 
that the mathematical model of the system is not required, and the de-
cision is based on an estimated value using approximate reasoning with 
the linguistic rules in the form of IF-THEN statements. This offers sig-
nificant flexibility with respect to uncertainty and nonlinearity, making 
FLC relatively easier to be implemented in practice. For example, [302] 
employed the fuzzy logic algorithm to control a DC-DC converter in a 
stand-alone PV water pumping system under variable temperatures and 
insolation conditions, to improve the PV energy production efficiency. 
[303] established a fuzzy logic controller for MPPT in a PV system and 
optimized fuzzy membership functions and duty cycles using four 
different methods, including the teaching–learning based optimization 
(TLBO), firefly algorithm (FFA), biogeography based optimization 
(BBO), and PSO. Results showed that TLBO and FFA performed much 
better in terms of the MPPT convergence and tracking accuracy. More-
over, FLC predefined settings have a significant impact on the control 
performance. To mitigate the impacts of parameter tuning, [304] pro-
posed a novel FLC by adding an intermediate variable β, aiming to 
simplify the fuzzy rule membership functions to cover wider operating 
conditions. It was observed that the converging speed in transient con-
dition was improved and oscillations around the maximum power point 
were eliminated by employing this new approach. 

6.2. Artificial neural network 

ANN is mainly employed to identify energy systems and load profiles 
by establishing numerical black-box models. Note that, unlike tradi-
tional statistical approaches, ANN is able to model linear or non-linear 
systems without any implicit assumptions, which provides incompa-
rable flexibility. For example, ANN was used to determine parameters of 
an emulated MPP locus and then embed them into a digital MPPT system 
[305]. It was noticed that the ANN model exhibited advantages like low 
computational requirement, fast-tracking speed, and high efficiency. To 
further explore the capability of ANN modeling, a comparative study 
between ANN and conventional incremental conductance method in 
grid-connected PV systems was conducted by [306], in which ANN’s 
hyper-parameters were optimized using GA. The comparison showed 
that the improved ANN yielded preferable results. Different ANN-based 
hybrid algorithms have also been developed to estimate the maximum 
power point and perform accurate control. For instance, [307] employed 
ANN to estimate voltages as an input signal to an FLC controller, in 
which significant improvements of precision and tracking speed were 
observed. Besides system identifications, an NN-based controller of 
MPPT is another application. For example, [307] established an ANN- 
based MPPT controller in two steps, in which the first step was to 
optimize neural network parameters off-line while the second step was 
to use the optimal ANN-MPPT controller for MPPT online. Both exper-
imental and simulation results showed that the ANN controller out-
performed the P&O method in terms of both convergence and 
oscillations. 

6.3. Particle swarm optimization 

As discussed in Section 5, PSO is a population-based metaheuristic 
algorithm that has a decent convergence speed towards large non- 
convex problems. It is found from the literature that traditional PSO- 
based MPPT techniques may suffer unexpected power oscillations in a 
steady-state [308]. Consequently, several modifications of the conven-
tional PSO were reported to improve the MPPT capability. For instance, 
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[309] conducted a modification for PSO on the initial value selection in 
MPPT optimization. Compared with a conventional hill-climbing 
method, the modified PSO under both uniform and partial shading 
conditions performed significantly better, which was also validated via a 
built-in hardware prototype. [310] improved the traditional PSO by 
dispersing particles and the algorithm was used to evaluate the variant 
of the global maximum power. The authors claimed that the improved 
PSO together with a shading pattern change reinitialization methodol-
ogy performed the best in tracking the dynamic global maximum power. 
Similarly, Farh et al. (2019) modified the position and velocity vector of 
PSO to make it be able to follow the dynamic global maximum power 
under time-invariant partial shading conditions. The authors compared 
the MPPT performance among the improved PSO, a hybrid PSO-FLC 
approach (Farh et al., 2018), and a deep recurrent neural network 
(DRNN) (Farh et al., 2019). It was reported that the improved PSO al-
gorithm was not as good as the other two algorithms in terms of steady- 
state oscillation, tracking speed, and accuracy, while the comparisons 
between the hybrid PSO-FLC and DRNN were not reported. 

6.4. Ant colony optimization 

By applying the ACO algorithm, the original MPPT problem is 
transformed into a probabilistic problem to mimic the social behavior of 
ants searching for a food source by finding the best path on a weighted 
graph. The ants marked walked routs with pheromones, and the con-
centration of pheromone may indicate the shortest route between their 
nest and food. ACO has been widely used for MPPT. For instance, [311] 
developed a proportional integral (PI)-based fractional open circuit 
voltage technique to enhance the ACO method for the MPPT problem in 
a stand-alone PV system. The proposed method outperformed tradi-
tional method in terms of satisfactory dynamic and steady-state per-
formance. [312] proposed a hybrid searching method that integrated 
ACO in initial stages of MPP tracking due to its global searching ability 
and P&O for its local searching ability. Results showed that the hybrid 
approach performed better than the standard ACO. [313] updated the 
pheromone of the standard PSO algorithm with a random distribution 
search technique. The obtained results were compared with other al-
gorithms including standard ACO, ANN, FLC, and PSO, and it proved 
that the PSO with modified pheromone had the best performance under 
variable atmospheric conditions. 

6.5. Genetic algorithm 

GA is a population-based metaheuristic algorithm based on evolu-
tionary biological behavior. GA treats randomly generated initial 
candidate solutions as fixed-length chromosomes, and then iteratively 
searches the optimal or near-optimal solution via mutation, crossover, 
and selection. Due to its relatively slow speed of convergence, GA is 
rarely directly employed for PV MPPT. However, due to its advantages 
of global searching in which GA explores the search space using its 
various kinds of crossover methods, GA has incomparable virtues in 
tuning parameters for PI-based and FLC-based controllers. For instance, 
[314] utilized GA to tune and obtain the optimum parameters of a PI- 
based MPPT controller for a stand-alone PV-diesel hybrid energy sys-
tem. Simulation results showed the effectiveness of the proposed 
controller in terms of dynamic response, voltage oscillation damping, 
and maximum overshooting. [315] optimized and implemented a GA- 
aided FLC controller for MPPT in a stand-alone PV system. The ob-
tained results showed good tracking efficiency and rapid response to 
changes in environmental parameters. Moreover, GA can also be applied 
to train and tune hyper-parameters in an ANN model. [316] proposed a 
GA-optimized ANN-based MPPT approach, and results showed that the 
proposed approach satisfied the requirement of the optimum power 
supply and attenuated the fluctuations around the operating point. 

6.6. Other metaheuristic algorithms 

Besides the popular AI-based algorithms reviewed above, there are 
several other metaheuristic algorithms employed to address the MPPT 
problem. For example, an improved differential evolution (DE) algo-
rithm was adopted by [317] to establish a single-ended primary- 
inductor converter, the feasibility of which was validated through 
physical implementation and experimentation. A firefly optimization 
algorithm (FOA) was proposed by [318] for the MPPT problem under 
partially shaded conditions. Compared with the traditional P&O and 
standard PSO method, both the experimental and simulation results 
presented a higher tracking efficiency and tracking speed of FOA. 
Cuckoo search (CS) is another well-known metaheuristic algorithm that 
exhibits advantages like fast convergence and high efficiency without 
expertise-based parameter tuning. CS was employed by [319] for MPPT, 
the results showed that CS outperformed both P&O and PSO regarding 
tracking capability, transient behavior, and convergence. 

6.7. Summary 

In this section, AI-based algorithms show promising control perfor-
mance for PV MPPT. It is seen that modified and hybrid algorithms 
exhibit distinguished advantages over single algorithms with respect to 
searching the global maximum power or avoiding the oscillation around 
MPP under partial shading conditions. Due to differences in parameter 
settings and evaluation criteria, it is challenging to accurately rank the 
MPPT capabilities among different algorithms. A comprehensive com-
parison among all these algorithms based on the same PV models and 
shading conditions is still needed to provide a better understanding. 

7. Other topics 

In addition to the above four main application themes, ML is also 
widely used in solar integration from other perspectives, such as radi-
ation modeling, synthetic solar data generation, solar energy assess-
ment, etc. Table 13 lists some representative work in these applications. 

Solar radiation modeling is to quantify the amount of incident solar 
radiation from non-radiation parameters (estimation), radiation pa-
rameters (decomposition), and the same radiation parameters with 
different settings (transposition). Solar radiation modeling is not a new 
topic. However, different from application like solar agricultural mete-
orology and architectural simulations, solar radiation modeling for solar 
power integration requires a much higher temporal resolution (at least 
hourly resolution). Therefore, AI-based solar radiation modeling 
research is relatively less than other similar work, such as solar fore-
casting. In this research theme, satellite imagery channels, weather 
parameters, calendar parameters, and cloud coverage are the most 
popular inputs. ANN, RF, and GBM are the prevalent ML algorithms. For 
example, ANN models were used to correlate satellite data in [322,323] 
to estimate different components of irradiance or radiance. [321] 
developed an RF model to estimate the global solar radiation from 
sunshine ratio, humidity, ambient temperature, and several calendar 
features. [327] developed XGBoost separation models to estimate DNI 
and DIF from GHI and weather parameters. [320] explored the use of 
ensemble ML models, i.e., RF and GBM, to model the daily and hourly 
solar irradiance from calendar features and clearness index. 

Synthetic solar data generation is to generate solar irradiance or 
power data by spatio-temporal correlation or downscaling. For example, 
[329] developed ANN models to downscale the daily solar radiation into 
hourly solar radiation. The ANN models generated hourly solar radiance 
data from daily solar radiation, hour angle, and sunset hour angle with a 
3.1% RMSE. [330] used a generalized linear model that included non- 
Gaussian mixtures to synthesize 1 min GHI data. It was found that the 
simulated data showed good coverage properties and temporal corre-
lation structures. A similar method was reported in [331], which used 
the Gaussian mixture model to downscale 30 min GHI into 1 min GHI. 
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Spatio-temporal features were used in [332] by a Gaussian copula based 
on the propagating cloud field. The method was able to downscale 
hourly solar irradiance data to higher resolutions in both space and time. 

ML models were also used in solar resource assessment. In [333], 
SVR models were used to estimate the roof characteristics, including 
available roof area for PV installation, shading factors from neigh-
bouring buildings and trees on the building roofs, global tilted solar 
radiation on non-horizontal surfaces, from urban features. Then the 
geographical potential and the technical potential of distributed PV 
systems in Switzerland were quantified by modeling the PV electricity 
generation from the estimated building characteristics. [334] used SVM 
models to classify solar roof-shape of 10,085 buildings in the city of 
Geneva in Switzerland. The model successfully identifies six types of 
roof shapes based on their useful area for PV installations and the po-
tential for receiving solar energy. The same research group combined 
the previous two studies by using RF models to estimate the solar and 
urban variables in entire Switzerland and found that the rooftop PV 

production can cover 25 of Switzerland’s demand in 2017 [335]. 
AI techniques, with their powerful learning capabilities, have been 

applied to many other research themes that are related to solar energy 
integration, such as PV tracking system control, cloud estimation, cloud 
type and weather type classification, and microgrid management. The 
review of these broad topics is beyond the scope of this paper. 

8. Discussion 

AI has been identified as a key driver to facilitate solar power 
penetration. An ever-increasing body of solar AI literature motivates a 
systematic and comprehensive way of literature review in this field. It 
will be especially beneficial to junior scholars who need an overall 
picture of the field, conference organizers who desire to offer mini- 
tracks and workshops with emerging topics, and journal editors who 
want to document the history and develop particular streams of research 
[24]. This paper performs a solar AI literature review by combining text 
mining and human expertise. Text mining plays a vital and irreplaceable 
role in collecting, categorizing, and ranking related literature. However, 
at the current stage, text mining is still a complementary approach. 
Therefore, this paper relies on human expertise to summarize, analyze, 
and compare solar AI papers. 

With the development of sensing and smart meter technologies, a 
large volume of data is collected from different sources for solar AI 
research. It is important to identify diverse and optimal data according 
to the research task. For example, NWP should be incorporated in 
longer-term solar forecasting, while sky images may be only used in 
intra-hour solar forecasting. Feature engineering should be performed if 
it is necessary. To facilitate reproducibility of the solar AI research, it is 
suggested to open-source the data or at least use publicly available 
datasets in case studies. Some popular open-source datasets for fore-
casting and detection are listed in Table 14. A number of tools are also 
available to get access to these datasets, such as the OpenSolar [184] and 
SolarData [336] packages. Since the AI models are getting more com-
plex, it is essential to conduct experiments with enough data. For 
example, at least one year of data should be used to test forecasting 
models. Researchers are encouraged to compare their work with the 
state-of-the-art benchmarks and publish their codes along with the 
paper. 

From the algorithm/model perspective, parameter/hyperparameter 
optimization is necessary to optimize models. The optimization process 
should be described and visualized to understand the modeling process. 
For example, in CNN, how many CNN layers should be included in each 
CNN block, and how many CNN blocks should be used to construct the 
model? The model training process should also be reported to justify the 
successful learning. AI/ML models are highly affected by the data. 

Table 13 
Other AI-based solar integration applications.  

Reference Application Method Input Output 

[320] Radiation 
estimation 

RF, GBM Clearness 
index, solar 
time, day 
number 

GHI, DNI, DHI, 
DIF 

[321] Radiation 
estimation 

RF Sunshine ratio, 
weather and 
calendar 
features 

Global solar 
radiation 

[322] Radiation 
estimation 

ANN Satellite images DNI 

[323] Radiation 
estimation 

ANN 
ensemble 

Satellite 
images, 
calendar 
features 

DNI, DHI, GHI 

[324] Radiation 
estimation 

ANN Weather 
features, local 
time 

GHI 

[325] Radiation 
estimation 

GBM Weather 
features, cloud 
cover, visibility 

DIF 

[156] Radiation 
estimation 

ANN, SVR Reflectivity, 
clear sky 
radiation, cloud 
index 

Global solar 
radiation 

[326] Radiation 
estimation 

ANN Weather 
features 

Global solar 
radiation 

[327] Radiation 
decomposition 

XGBoost GHI and 
weather 
parameters 

DNI, DIF 

[328] Radiation 
transposition 

ANN, SVR Radiation on 
the horizontal 
surface 

Radiation on 
the tilted 
surface 

[329] Synthetic data 
generation 

ANN daily radiation, 
hour angle, 
sunset hour 
angle 

Hourly 
radiation 

[330] Synthetic data 
generation 

Generalized 
linear model 

30 min GHI 1 min GHI 

[331] Synthetic data 
generation 

Gaussian 
mixture 
model 

30 min GHI 1 min GHI 

[332] Synthetic data 
generation 

Gaussian 
copula 

Spatio- 
temporal 
features 

Irradiance 

[333] Resource 
assessment 

SVR Building and 
population 
features 

Roof 
characteristics 

[334] Resource 
assessment 

SVM Roof 
characteristics 

Roof shape 
type 

[335] Resource 
assessment 

RF Building 
characterstics, 
weather 
features 

Rooftop PV 
installation 
potential  

Table 14 
Open-source time series datasets for BTM modeling and forecasting.  

Name/ 
Reference 

Parameters Spatial 
coverage 

Resolution/ 
length 

Field 

Microgen  
[337] 

PV power, meta 
data 

7,000 +
locations 

30 min/1 
year 

Forecasting 

Solcast [338] PV power, meta 
data 

1,287 
locations 

10 min/7 
months 

Forecasting 

UCSD [339] Meteorological 
variables, 

1 location 1 min/3 years Forecasting 

NWP 
NSRDB [340] Meteorological 

variables 
US 30 min/25 +

years 
Forecasting 

NREL/SRRL  
[341] 

Meteorological 
variables 

1 location 1 min/40 
years 

Forecasting 

SUFRAD  
[342] 

Meteorological 
variables 

7 locations 1 or 3 min/ 
25 years 

Forecasting 

Duke PV 
Imagery  
[343] 

Satellite aerial 
images 

US 30 cm/NA Detection  
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Therefore, the same data processing, including pre-processing and post- 
processing, should be ensured when comparing different models. For 
complex methodologies that consist of a sequence of techniques, im-
provements from each technique should be analyzed. For example, some 
research achieves forecasting improvements by decomposing time series 
into multiple signals and predicting each signal with an advanced ML 
model. It is important to identify which step leads to the improvement 
and how much improvement each step contributes. 

In this review paper, AI techniques in four main domains are 
reviewed. Specifically, in solar forecasting, the application of deep 
learning is still at its early stage, compared to shallow ML. The devel-
opment of deep learning techniques is expected to capture spatial and 
temporal patterns in multiple data sources in solar forecasting data in a 
more efficient way. Deep learning-based solar forecasting could advance 
or at least be competitive with shallow ML methods. Among different 
types of data, image-based solar forecasting is still less researched. In-
clusion and optimization of input combinations from various sources are 
expected to further improve AI-based forecasting performance. 
Compared to load and wind forecasting, solar forecasting in probabi-
listic forms is also lagging behind. Probabilistic solar forecasting will 
help power system operators better manage uncertainties associated 
with forecasts, therefore, becoming an emerging topic and will be 
continuously under investigation. 

In the solar PV detection theme, two major fields that rely heavily on 
AI techniques are solar PV array detection and fault detection. Both 
fields are critical to solar PV integration and operations. Similar to solar 
forecasting, deep learning is becoming prevalent in this field and will be 
the focus in the future. However, there is a lack of consent to using 
standard datasets and metrics for case studies. Any research that facili-
tates the open-source research in this field will receive high attention. 
Regarding the dataset, power system measurements, such as the 
Advanced Metering Infrastructure (AMI) or higher-level data, and the 
non-intrusive measurements, such as satellite aerial images, will be 
especially beneficial. In terms of metrics, popular classification evalua-
tion metrics, such as confusion matrix-based metrics and ROC curve- 
based metrics should be used. In addition, the application value of this 
field is not fully recognized. This should be enhanced by combining 
detection tasks with power system operations. 

Regarding the siting and sizing of PV system, hybrid metaheuristic 
algorithms should be a foreseeable trend as the penetration of PV and 
EVs increase continually in some local grid, making the grid network 
more complicated. Another potential trend is to optimize the sizing and 
siting of PV and other distributed generation sources to establish re- 
configurable microgrids and provide stronger resilience and reliability 
against extreme weather conditions and other disruptive events. 

For the MPPT techniques, hybrid approaches that combine multiple 
AI-based control methods may play a dominating role in future studies, 
due to its excellent advantages like superior tracking control and global 
optimization capability compared to traditional control algorithms. 
Moreover, more efforts are also expected to alleviate its side effects 
including high computational complexity and poor real-time control 
ability. 

9. Conclusion 

This paper conducted a comprehensive taxonomical review on arti-
ficial intelligence (AI) applications in solar photovoltaic (PV) system 
grid integration. The bibliographic infrastructure was constructed by 
2,772 papers that were collected, analyzed, and categorized using text 
mining techniques. Four main solar AI research themes were identified 
by the latest review papers, term frequencies, and the latent Dirichlet 
allocation (LDA) method, which were forecasting, detection, design 
optimization, and control. All the papers were assigned to one of the 
research themes, where a total of 330 papers that are most relevant and 
popular were reviewed. It is important to note that the text mining re-
sults may miss certain papers due to the keywords selection. The review 

paper focuses on recent AI applications to solar photovoltaic system 
forecasting, detection, optimization, and control. Other AI-related solar 
grid integration topics, such as dispatching scheduling, reactive power 
control, protection coordination, are beyond the scope this review. 

Solar forecasting, including irradiance and power output forecasting, 
is the theme that publishes the most papers. Recent forecasting papers 
advanced forecasting techniques from feature engineering, model opti-
mization, and post-processing steps. Several emerging topics, such as 
image-based forecasting, deep learning forecasting, and probabilistic 
forecasting, were identified by the latest forecasting papers. Specifically, 
automated feature selection and construction should be conducted using 
advanced optimization methods, which incorporates data from various 
sources, especially sky images, shadow images, and satellite images. The 
development of deep learning techniques is and will still be a hot topic in 
solar forecasting. Probabilistic solar forecasting will be a promising field 
to mitigate solar forecasting uncertainties. 

AI-based detection detection consists of PV array detection and PV 
fault detection. PV fault detection used either AI regression methods or 
classification methods, both of which showed accurate results. PV array 
detection is a new research field, where deep learning contributed to 
most papers. However, AI-based PV detection was less popular 
compared to solar forecasting. This was largely due to the relatively lack 
of publicly available datasets and underestimated application value in 
power system operations. 

Metaheuristic learning is extensively used in sizing and sizing-siting 
optimization problems in PV-contained systems, which was compre-
hensively reviewed by algorithms and by different systems. It was found 
that the sizing optimization usually combined PV with other kinds of 
renewable energy resources in standalone or grid-connected systems. 
The sizing-siting optimization was far more complicated, which 
required more powerful solvers to reduce the computational cost. The 
PV-electrical vehicle optimization was an emerging scenario that was 
less researched. In these optimization problems, economic efficiency 
and reliability were the two prior objectives, and hybrid metaheuristic 
learning was the trend. At last, a comprehensive comparison of all the 
state-of-the-art algorithms is of great necessity to fully evaluate the large 
collection of metaheuristic learning methods. 

ANN and metaheuristic learning applications in PV maximum power 
point control were also extensively reviewed. The modified and hybrid 
algorithms exhibited distinguished advantages over single algorithms in 
terms of searching the global maximum power and avoiding the oscil-
lation around the maximum power point under partial shading 
conditions. 
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Hoffmann, et al. Gridsense sologrid pilot project—using decentralized artificial 
intelligence for making distribution grids resilient. In: CIRED Workshop 2016, 
IET, 2016, p. 1–3. 

[13] PrognoNetz. Prognonetz – an intelligent ampacity forecast for overhead lines 
[Online]. Available: https://www.itiv.kit.edu/english/6518.php, 2019. 

[14] IRENA. Artificial intelligence and big data. Technical report, International 
Renwable Energy Agency, Abu Dhabi, 2019. 

[15] He Zhuo, Zhang Yan, Li Huiyuan. Self-inspection cleaning device for photovoltaic 
power plant based on machine vision. In: IOP Conference Series: Earth and 
Environmental Science, vol. 242. IOP Publishing; 2019. p. 032020. 

[16] Kumar Nallapaneni Manoj, Sudhakar K, Samykano M, Jayaseelan V. On the 
technologies empowering drones for intelligent monitoring of solar photovoltaic 
power plants. Procedia Comput Sci 2018;133:585–93. 

[17] de Silva D, Pang Z, Osipov Evgeny, Vyatkin Valeriy. Guest editorial: Special 
section on developments in artificial intelligence for industrial informatics. IEEE 
Trans Industr Inf 2019;15(6):3690–2. 

[18] Ramos Carlos, Liu Chen-Ching. Ai in power systems and energy markets. IEEE 
Intell Syst 2011;26(2):5–8. 

[19] Xu Zhao, Zhao Junhua. Solar energy harvesting, storage and utilization [Online]. 
Available. 2018. 

[20] Yang Dazhi, Gueymard Christian A, Kleissl Jan. Submission of data article is now 
open. Sol Energy 2018;171(27):A1–2. 

[21] Carlos FM Coimbra. Looking ahead with the journal of renewable and sustainable 
energy: Volume 11 and beyond, 2019. 

[22] O’Mara-Eves Alison, Thomas James, McNaught John, Miwa Makoto, 
Ananiadou Sophia. Using text mining for study identification in systematic 
reviews: a systematic review of current approaches. Systematic Rev 2015;4(1):5. 

[23] Yang Dazhi, Kleissl Jan, Gueymard Christian A, Pedro Hugo TC, Coimbra Carlos 
FM. History and trends in solar irradiance and PV power forecasting: A 
preliminary assessment and review using text mining. Sol Energy 2018;168: 
60–101. 

[24] Delen Dursun, Crossland Martin D. Seeding the survey and analysis of research 
literature with text mining. Expert Syst Appl 2008;34:1707–20. 

[25] Moro Sérgio, Cortez Paulo, Rita Paulo. Business intelligence in banking: A 
literature analysis from 2002 to 2013 using text mining and latent dirichlet 
allocation. Expert Syst Appl 2015;42(3):1314–24. 
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