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A B S T R A C T

Accurate and timely solar forecasts play an increasingly critical role in power systems. Compared to longer
forecasting timescales, very short-term solar forecasting has lagged behind in both research and practice. In
this paper, we propose deep convolutional neural networks (CNNs) to provide operational intra-hour (10-
minute-ahead to 60-minute-ahead) solar forecasts. We develop two CNN structures inspired by a widely-used
CNN architecture. The CNNs are tailored to our solar forecasting regression tasks and rely solely on sky
image sequences. Case studies based on six years of data (over 150,000 data points) demonstrate that the
best CNN model has forecast skill scores of 20%–39% over the naive persistence of cloudiness benchmark,
even at these very short timescales. The CNNs also have consistently superior performance when compared
to shallow machine learning models with meteorological predictors, where the improvement averages around
7%. The sensitivity analyses show that the sky image length, resolution, and weather conditions have impacts
on the deep learning model accuracy. In our intra-hour problem with specific setups, two sky images with
a 10-minute 128 × 128 resolution yield the most accurate forecasts. Current limitations, future work, and
deployment challenges and solutions are also discussed.
1. Introduction

The importance of accurate solar forecasts has been recognized,
which has led to a considerable number of solar forecasting publica-
tions. According to the Google Scholar database, there are over 22,000
records on solar irradiance/power forecasting published in 2020. Exist-
ing solar forecasting methods can be categorized in various ways. For
example, in one of the most popular review papers, Inman et al. [1]
classified solar forecasting techniques into five groups, including regres-
sive methods, artificial intelligence methods, remote sensing models,
numerical weather prediction (NWP), and local sensing. Similar cat-
egorization was proposed by Yang et al. [2] and Diagne et al. [3].
Depending on the use of analytical equations, solar forecasting models
were divided into ‘‘white box’’, ‘‘black box’’, or ‘‘gray box’’ models [4].
White box models rely on physical laws to model the photovoltaic (PV)
system. Black box methods refer to statistical and machine learning
methods that capture numerical patterns within the data. A gray box
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model is a combination of both methods. It is observed that algo-
rithm principles, input sources, and forecasting timescales are the most
widely accepted classification criteria for solar forecasting techniques.

The development of machine learning and sensing technologies
has blurred the boundaries between different categories of models.
For instance, NWP outputs and satellite-based features are always
included as inputs to regressive and machine learning models for intra-
day and day-ahead solar forecasting. On the other hand, regressive
and machine learning methods are also combined with local sensing
networks for better intra-day solar forecasting. NWP outputs and in-
situ meteorological measurements are the most widely-used inputs to
the machine learning models. For example, NWP and satellite data were
used as exogenous input to forecast 1-hour-ahead (1HA) to 6HA global
horizontal irradiance (GHI) [5]. Similarly, satellite-based cloud motion
features were integrated with NWP by Wolff et al. [6] to improve
the forecasting accuracy. Four parameters, including the total cloud
cover, the ambient temperature, the weather condition, and the plane
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of array irradiance clear sky model, along with the PV AC power
rating, were used for 12HA solar power forecasting [7]. In addition,
measurements of the neighboring PV systems were also informative
as they could provide correlations for 5-minute-ahead (5MA) to 8MA
solar forecasting models, which showed a 6% forecast skill score over
persistence of cloudiness [8].

Sky images have been proved to be another informative source of
input. However, sky image-based solar forecasting seemingly lags be-
hind other methods, both in practice and in research. One reason could
be that sky image-based approaches are most suitable for intra-hour
forecasting, which has competitive alternatives, such as persistence
models. For example, a persistence method performed superior to
machine learning methods, which made the latter ones less competitive
for 15 min time granularities in the additive mode [9]. In practice, most
utilities rely on persistence models for intra-hour solar forecasting [10].
Recently, utilities have started to seek more precise intra-hour forecast-
ing models. For example, the California Independent System Operator
(CAISO) has continuous interest in developing intra-hour forecasting
methods that provide 5-minute forecasts for the next 2 hours [11].
Another reason is the unclear scalability of the approach, largely due
to the low deployment of sky camera infrastructures. Specifically, there
is limited research on the ability to aggregate sky image-based solar
forecasts for individual solar sites into higher level forecasts in power
systems, such as load zones and balancing areas. Finally, the higher
complexity and costs of image-based deep learning models must be
hurdled, compared to numerical time series-based models. As graphics
processing units (GPUs) become more accessible, processing sky images
with deep learning techniques for solar forecasting has become an
emerging topic [12–15].

With the motivations and new techniques discussed above, sky
image-based solar forecasting has attracted attention in recent years.
Yet there are serious drawbacks to the research currently conducted
in this area. First, most models rely on empirically-defined sky image
features, such as pixel statistics, image segments, and cloud movement
characteristics. For example, three statistics of sky image pixel red blue
ratios, i.e., mean, standard deviation, and Rènyi entropy, were used in
conjunction with meteorological parameters for 1HA GHI [16]. Numer-
ical metrics of cloud coverage are often also important features. In Chu
et al. [17] and Marquez and Coimbra [18], cloud indices were extracted
from sky images to predict 3MA–10MA direct normal irradiance (DNI).
Cloudy pixel percentages of six grid elements originating from the sun
were used as the input to artificial neural network (ANN) models, which
achieved over 20% forecast skill scores [17]. Moreover, the cloud
velocity was proved to have a significant impact on the DNI forecasting
accuracy. Forecast root mean square error increased by 24.2% and
8.4%, respectively, with an overestimation and underestimation of the
cloud velocity magnitude by 50% [19]. Although being effective in
solar forecasting, the above sky image parameters require complex
feature engineering and domain-specific expertise. It has been proved
in various fields that machine learned features are better than hand-
crafted features for different tasks [20–22]. Although being effective in
solar forecasting, these hand-crafted image features may not be optimal
for solar forecasting.

Deep learning models have the potential to provide a successful
solution to the manual interventions required, with only simple pre-
processing procedures. One of the key features of deep learning is the
end-to-end learning fashion by gradient descent, which has been proven
many times in various fields [23–26]. However, this end-to-end learn-
ing capability was not fully utilized in some sky image solar forecasting,
where deep learning classification networks were used to extract sky
image features for other forecasting regression models [12,13]. For
example, solar forecasting was modeled as a classification problem in
Pothineni et al. [12], where continuous irradiance was converted into
binary values using a clear sky index threshold. Additionally, a con-
2

volutional neural network (CNN) was used to extract image features,
which are then fed into a linear autoregressive model and a multilayer
perceptron model [13].

In addition, some deep learning models for solar forecasting have
not considered state-of-the-art deep learning architectures. For exam-
ple, a 3-convolutional-layer CNN was used in Kong et al. [27], which
might not be deep enough to forecast solar data that involves complex
patterns. Similarly in Zhao et al. [28], a feature extractor with two
convolutional layers was used to map sky image features to solar
irradiance. Typically, an efficient deep learning network consists of
10–20 convolutional layers for classification problems [29]. Regres-
sion tasks, with more complicated continuous outputs, require at least
similarly deep architectures for efficient feature learning. When fused
with other layers (e.g., dense layers), the network should be even
more complex to be effective. A high risk of underfitting may exist
in shallow CNNs but was not always realized in the literature. For
example, a network with 2 convolutional layers and residual blocks
was used in Zhang et al. [30] to extract sky image features. A network
with 3 convolutional layers and a concatenated dense-layer head was
found to mimic the persistent method in 2MA–20MA solar irradiance
forecasting [31]. The researchers realized this could be improved by
upgrading the network with recurrent units. A network with 4 convo-
lutional layers even showed less accurate forecasts when compared to
persistence [32].

Finally, some research verified deep learning models with lim-
ited data, which could not provide general and convincing results. A
small training dataset might suffer from overfitting, especially in deep
learning. However, this was not realized in some research. In Zhang
et al. [30], only 6 months of data were used to train a complex deep
learning network with convolutional layers, long short-term memory
layers, and dense layers. The training dataset in another study consisted
of only around 30 days of images [27]. A more extreme example used
only 7 days of data to train CNNs [32]. A related issue is using too
small of a testing dataset to show that the results are generalizable. For
example, a 20-day dataset was used to verify the forecasting methods
in four cloud conditions [33]. Similarly in Zhang et al. [30], 20 days
of sky images from two months were used as the testing dataset. A 3-
day testing dataset showed that the CNN provided worse forecasts than
persistence in 5MA–20MA forecasting [32].

To address the challenges described above in sky image-based solar
forecasting, this paper develops two deep CNN methods taking sky
image sequences as input for operational intra-hour solar forecasting.
The first 2-dimensional CNN method stacks image sequences in the
channel dimension and the second 3-dimensional (3D) CNN method
applies 3D feature learning. Both methods are trained in an end-to-end
manner. Input hyperparameters are also optimized through sensitivity
analyses. The contributions of this paper include: (i) developing two
end-to-end sky image-based CNN configurations for operational solar
forecasting, (ii) identifying the best input setup by sensitivity analyses
and interpreting the machine learned image features by filtered feature
maps, (iii) achieving an average forecast skill score of 20% based on
6 years of open-source data. The remainder of this paper is organized
as follows. Section 2 introduces operational solar forecasting, formu-
lates sky image-based intra-hour solar forecasting, and develops the
two deep CNNs. The experimental setups, including the dataset, case
studies, baseline and benchmark models, are described in Section 3.
Section 4 details forecasting results and performs sensitivity analyses.
Section 5 discusses limitations, future work, deployment challenges and
opportunities. Section 6 concludes the paper.

2. Methodology

Both power system operators and energy market participants re-
quire timely and accurate solar forecasts. This section first introduces
operational solar forecasting requirements for individual PV plants.
Then, the intra-hour solar forecasting problem is formularized. Finally,
the deep CNNs are developed to solve the intra-hour solar forecasting

problem.
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Fig. 1. Operational intra-hour solar forecasting. In this research,  = 10-min,  =
10-min,  = 60-min,  = 10-min.

2.1. Operational solar forecasting

In this study, we propose a methodology to provide operational 1HA
solar forecasts, which can be directly used in daily utility operations.
Operational forecasting refers to forecasting problems that fit utilities’
operational needs, which are regulated by independent system oper-
ators (ISOs) or regional transmission organizations according to the
electricity markets [34]. For example, in the CAISO real-time energy
market, PV plant operators are required to submit intra-hour forecasts
with a 65-min horizon and a 5-min resolution, which are used to
commits resources in the 15-min real-time unit commitment and the 5-
min real-time economic dispatch. The submission is due 10-min before
every operating time and should be updated every 15-min. Operational
forecasting is more complex than forecasting defined in the majority of
literature, where only fixed-step ahead forecasts are generated. There
are at least four time-related parameters in operational forecasting
problems—lead time (), time horizon (), resolution (), and update
rate ( ) [34]. Formulating solar forecasting in the form of operational
forecasting not only enhances the value of the forecasts related to their
actual application, but also bridges the gap between the forecasting
community and the power systems community.

2.2. Intra-hour forecasting formulation

In this research, we seek to develop a sky image sequence-based
deep learning methodology to forecast intra-hour GHI1 in an oper-
ational forecasting manner. Multi-step ahead forecasting is achieved
through six parallel models, which is demonstrated in Fig. 1. Based
on our dataset (detailed in Section 3.1), forecasts provided by the six
independent models span 1-hour with a 10-min lead time, a 10-min
resolution, and a 10-min update rate. Each forecasting model takes a
sky image sequence as its input and predicts a single future GHI value
at each forecasting issue time. The sky image sequence to GHI mapping
is formulated as:

𝐲𝛥𝑡 = 𝐹𝛥𝑡(𝐗,𝐖𝛥𝑡) (1)

where 𝐗 ∈ R𝑁×𝑊 ×𝐻×𝐷 is the image sequence input; 𝐲 ∈ R𝑁×1 is the
actual GHI; 𝑁 , 𝑊 , 𝐻 , 𝐷 are the sample number, the image width, the
image height, and the image channel size (a typical digital image has
red, green, and blue channels), respectively; 𝛥𝑡 ∈ {10, 20,… , 60} is the
lead time in terms of minutes; 𝐖 is the trainable parameter matrix in
CNN models.

To perform this very short-term solar forecasting (VSTSF), optimal
parameters should be obtained first at the training stage. Since VSTSF
is a regression problem, we use L1 (e.g., mean absolute error) loss

1 We target forecasting the GHI instead of PV power due to the lack of
measured power data for the image location.
3

function to respect the overall performance of the model and reduce
outlier impacts [35]:

𝐽 (𝐖𝛥𝑡) =
1
𝑁

𝑁
∑

𝑛=1
|�̂�𝛥𝑡,𝑛 − 𝑦𝛥𝑡,𝑛| (2)

where 𝑛 is the sample index; 𝑦 and �̂� are actual and forecast GHI
values, respectively. Then, the objective of the deep learning training
is to optimize the parameters, 𝐖𝛥𝑡, by minimizing the loss function
(i.e., reducing the forecast error) in an end-to-end manner (i.e., from
image sequences to GHI values). Once the optimal model parameters,
𝐖∗

𝛥𝑡, are obtained, the well-trained deep learning models are used to
generate forecasts in the forecasting/testing stage:

�̂�𝛥𝑡 = 𝐹 ∗
𝛥𝑡(𝐗,𝐖

∗
𝛥𝑡) (3)

where �̂� is the forecast GHI vector; 𝐹 ∗ indicates the well-trained deep
learning model.

2.3. Deep learning architectures

Deep learning has been widely used to process images in the com-
puter vision application field, such as in medical image processing,
automatic driving, and surveillance. Deep learning-based image pro-
cessing is less commonly studied in the power and energy field, where
most applications are classification problems [36–39]. In this research,
we develop CNNs for sky image processing for solar forecasting, which
is defined as a regression problem.

Unlike most sky image-based solar forecasting that uses shallow
machine learning, this research sets up the model in an end-to-end
(i.e., image sequence to GHI) manner. This means that the forecast-
ing does not rely on complex feature engineering, such as feature
extraction, selection, and reconstruction. We design two deep CNN ar-
chitectures to learn the latent patterns between the GHI and sequences
of images. CNN architectures are preferred over other deep learning
architectures for the following reasons: (i) CNNs are more powerful
than other architectures in image processing regarding their feature
learning capabilities and performance, since convolutional layers are
able to deal with inherent properties of images by using kernels and
convolution [40,41]; (ii) image sequence-based solar forecasting using
CNNs has lagged behind, which requires further investigation; (iii)
other successful architectures, such as long short-term memory, have
a higher level of complexity, which is beyond the scope of this study.

2.3.1. The VGG-like feature extractor
The two architectures are inspired by the popular very deep convo-

lutional network developed by the Visual Geometry Group (VGG) [42]
and optimized for our intra-hour solar forecasting problem. The reasons
for selecting the VGG-like CNNs are that: (i) the VGG networks are
recommended by the deep learning community for their performance
in various deep regression problems (regression problems solved by
deep learning) [29]; (ii) the complexity of VGG networks is lower than
their counterparts, such as the ResNet2; (iii) the forecasting accuracy of
the VGG networks is higher in our case studies with smaller datasets.3
The overall frameworks of the two CNNs are shown in Fig. 2. The first
architecture is a 2-dimensional CNN that processes stacked images in
two directions—the height and width of images (denoted as SCNN). The
second architecture is a 3-dimensional CNN that directly conducts 3D
tensor calculations (denoted as 3DCNN). Each architecture consists of
convolutional layers, max-pooling layers, and densely-connected layers.

2 The ResNet is eight times deeper than VGG nets [43].
3 We compare multiple deep learning networks, including the VGG

networks, the ResNets, and the Inception Networks with two year data (2012–
2013). The VGG networks outperform their counterparts. However, comparing
different deep learning architectures exhaustively is beyond the scope of this
paper, which is not discussed in the paper.
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𝑚

Fig. 2. Frameworks of the two developed deep learning architectures..

The general architectures of the two methods are similar. As shown in
Fig. 2, the developed architectures contain 5 feature learning blocks
(FLBs), each of which stacks 2 or 3 convolutional layers and a max-
pooling layer, which is shown in the upper parts of Figs. 2(a) and 2(b).
The two networks utilize small filters to extract more receptive fields
from the input tensors. The filter number of the next FLB is doubled to
extract more abstract and informative features.

Convolutional layers are the core building blocks of the two deep
learning architectures. They extract features from sky images by con-
volving the input of each layer with its filters, which is expressed as
𝐙𝑙 = 𝐖𝑙 ∗ 𝐗𝑙 + 𝐛𝑙. 𝐗, 𝐖, 𝐛, and 𝐙 are the input tensor, parameter
tensor, bias tensor, and output tensor in the 𝑙th layer, respectively; ∗
is a convolution operator. Then, the convolution results are applied
to an activation function and output feature maps. Low-level features,
such as dots, lines, and curves of sky images, are learned by the
first convolutional layers. In higher convolutional layers, increasingly
complex features are extracted on top of previous sky image features.

Among convolutional layers, max-pooling layers pick out maximum
feature values of local regions to extract representative features while
reducing the dimension. The pixel window in each block is 2 × 2 or
2 × 2 × 2 (depending on which architecture) with a stride of 2. The
pooling layers introduce more translation invariance during the spatial
representation learning, by sub-sampling convoluted feature maps by
the non-overlapping pooling windows.

2.3.2. The SCNN
The top part of Fig. 2(a) shows the structure of SCNN models and

the bottom part shows the layer hyperparameters. SCNN models take
stacked images as input and output GHI forecasts. There are five feature
learning blocks with increasing numbers of filters. Each block (except
for the first block) contains 2–3 convolutional layers and a max-pooling
layer. The convolutional and max-pooling layers are powerful in ex-
tracting informative features from the sky images, but cannot directly
solve the regression problem. Therefore, fully-connected layers are used
to learn the non-linear combinations of sky image features. All the
inputs are transmitted to the output in fully-connected layers, as: 𝐙𝑙 =
4

𝐖𝑙 ⋅ 𝐗𝑙 + 𝐛𝑙. Two fully-connected layers are included in the last layers
for regression. The first fully-connected layer has 256 neurons and the
output layer has 1 neuron. The numbers of layers and neurons are
optimized by the grid search. The rectified linear activation function is
used in convolutional layers and the linear activation function is used
in fully-connected layers. A 0.2 dropout is optimally selected [44] by
the grid search and used before each fully-connected layer to avoid
overfitting.

2.3.3. The 3DCNN
The 3DCNN structure is similar to the SCNNs, as shown in Fig. 2(b).

In contrast to 2D CNNs that treat each depth channel separately,
3DCNN uses 3D filters to extract features. There are also 5 feature
learning blocks in 3DCNN models. Each block has convolutional layers
and one max-pooling layer. Due to the nonisotropic image input, the
filter dimension is 3 × 3 × 2. The same filter numbers and activation
functions are used in 3DCNN models for fair comparisons. The same
dense layers are used on top of the 3DCNN blocks.

2.3.4. Training deep learning models
A prerequisite of an accurate model is a successful training process.

According to Lathuilière et al. [29], the adaptive moment optimization
(Adam) is used to optimize CNN parameters that are initialized with the
pre-trained ImageNet weights. The mean absolute error is used as the
loss function to be minimized by updating parameters in the opposite
direction to their gradients:

𝑚𝑖,𝑗 = 𝛽1𝑚𝑖,𝑗−1 + (1 − 𝛽1)∇𝑤𝑖
𝐽 (𝐖;𝐁𝑗 ) (4)

𝑣𝑖,𝑗 = 𝛽2𝑣𝑖,𝑗−1 + (1 − 𝛽2)∇2
𝑤𝑖
𝐽 (𝐖;𝐁𝑗 ) (5)

̂ 𝑖,𝑗 =
𝑚𝑖,𝑗

1 − 𝛽𝑗1
(6)

�̂�𝑖,𝑗 =
𝑣𝑖,𝑗

1 − 𝛽𝑗2
(7)

𝜔𝑖,𝑗 = 𝜔𝑖,𝑗−1 − 𝛥𝜔𝑖,𝑗 = 𝜔𝑖,𝑗−1 − 𝜂
�̂�𝑖,𝑗

√

�̂�𝑖,𝑗 + 𝜖
(8)

where 𝑚 and 𝑣 are, respectively, exponential moving averages of first
and second moments of the gradient along network parameter 𝜔𝑖 in the
𝑗th mini-batch, 𝐁𝑗 = [𝐗𝑗 , 𝐲𝑗 ] (𝑚𝑖,0 = 𝑣𝑖,0 = 0). 𝛽1 = 0.9 and 𝛽2 = 0.999 are
Adam parameters controlling the decay rates of the moving averages.
𝜂 = 0.01 is the initial learning rate and 𝜖 = 1 × 10−8 is a constant
to prevent zero division. In the training stage, the models are passed
through the training and validation datasets 60 times, during which
mini-batches with a batch size of 64 (determined based on the GPU
memory and the validation accuracy) are randomly generated to shuffle
the data order. Gradients are averaged over the mini-batch in each
iteration to update the weight matrix, 𝐖.

3. Experimental setup

3.1. Dataset description and pre-processing

Following the suggestion of using open-source datasets to practice
solar forecasting [34], this research conducts all the experiments on a
publicly available dataset—the National Renewable Energy Laboratory
(NREL) solar radiation research laboratory (SRRL) dataset. The SRRL
dataset is one of the largest publicly available datasets with both
total sky images and meteorological measurements. The data has been
collected since 1981 at the South Table Mountain Campus of NREL
(longitude: 105.18◦ W, latitude 39.74◦ N, elevation 1,828.2 m). More
information about the dataset can be found in Stoffel and Andreas [45].
The data can be accessed through the OpenSolar package [46].

Two types of data, namely, the total sky images and numerical
meteorological measurements, are downloaded from the NREL SRRL
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Fig. 3. Sky image pre-processing.

database. The sky images taken by a Yankee Total Sky Imager (TSI-800)
every 10-min are selected for the case studies. Six years of sky images
are downloaded and pre-processed. Every image contains 352 × 288
pixels. The developed networks require minimal preprocessing due to
their end-to-end learning capability. The only preprocessing is using
a binary mask to circularly crop the images to avoid the hazy sky
and obstacle presence. Every image with a region-of-interest (ROI) has
256 × 256 pixels. Fig. 3 demonstrates this only image pre-processing
applied in this research.

Meteorological measurements are also collected to guide the net-
work training and to build the benchmark models. Numerical mea-
surements have a 1-min resolution, which are averaged to 10-min to
keep consistency with sky images. Numerical parameters include tem-
perature, relative humidity, wind speed, GHI, DNI, diffuse horizontal
irradiance (DHI), and atmospheric pressure. Irradiance parameters are
normalized by their corresponding clear sky irradiance, while other
parameters are normalized by their maximum values. Therefore, the
forecasting target parameter is the clear sky index:

𝐲 ∶= 𝐂𝐒𝐈 = 𝐆𝐇𝐈
𝐂𝐒𝐆𝐇𝐈

(9)

where CSGHI is the Ineichen and Perez clear sky GHI simulated in the
pvlib Python package [47]. Fig. 4 shows the GHI, CSGHI, CSI, and
their coincident sky images under various weather conditions.

3.2. Case studies

There are 155,644 data points after filtering out nighttime data
points and aligning images with numerical data. To ensure the success-
ful training and convincing verification, six years (i.e., from 2012-01-01
to 2017-12-31) of data are used and divided into a training dataset, a
validation dataset, and a testing dataset. The training dataset consists
of the first three years (i.e., 2012-01-01 through 2014-12-31) data. The
following year of data (i.e., from 2015-01-01 to 2015-12-31) are used
for validation, and the last two years data are used for testing (i.e., from
2016-01-01 to 2017-12-31). The validation dataset is a hold-out sample
set used to tune model hyperparameters. All the results in Section 4 are
based on the testing dataset.

In addition to different machine/deep learning methods, sensitivity
analyses are performed to investigate the impact of the image sequence
length, image resolution, and lead time on the forecasting accuracy.
Four image sequence lengths, i.e., 20, 21, 22, 23 image(s), three im-
age resolutions, i.e., 256×256, 128 × 128, 64×64, and six lead times,
i.e., 10MA–60MA, are included in the case studies. Therefore, a total of
144 models are built to cover all the scenarios of the two deep learning-
based forecasting methods (4 image lengths × 3 image resolutions × 6
lead times × 2 methods). Sample sizes of the case studies differ due to
the different image sequence lengths and lead time scenarios. Table 1
lists the sample sizes of 24 experiments corresponding to one of the six
model-resolution combinations. It is natural that taking more images as
the model input or forecasting a longer lead time reduces the sample
size due to the data alignment. Using such settings corresponds to more
realistic compromises in real-world forecasting practice.
5

Fig. 4. GHI, CSGHI, CSI time series, and their corresponding sky image sequence under
three weather conditions. The color indicates the three irradiance features. Sky images
with a 10-min resolution are used in the case studies, but only hourly images are
included in this figure due to the limited space. The numerical parameters are also
averaged to 10-min and shown in the figure. The hourly values are indicated by the
points.

Table 1
Sample sizes in different image sequence length and lead time scenarios.

Image No.  [min] Sample size

Training Validation Testing

1

10 76,708 26,271 52,665
20 75,882 25,989 52,109
30 74,820 25,624 51,381
40 73,748 25,258 50,653
50 72,681 24,895 49,925
60 71,612 24,531 49,196

2

10 75,482 25,827 51,795
20 74,659 25,545 51,241
30 73,593 25,179 50,516
40 72,524 24,815 49,791
50 71,459 24,453 49,065
60 70,393 24,091 48,339

4

10 73,048 24,940 50,069
20 72,222 24,658 49,520
30 71,161 24,295 48,800
40 70,097 23,934 48,080
50 69,040 23,576 47,357
60 67,978 23,218 46,632

8

10 68,239 23,200 46,672
20 67,418 22,923 46,126
30 66,368 22,568 45,410
40 65,314 22,215 44,691
50 64,262 21,863 43,973
60 63,207 21,509 43,253
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Table 2
Machine learning benchmark models.

Model Function/Algorithm Hyperparameter

ANN1 Momentum back-propagation max_epoch=1,000, momentum=0.9, lr=0.01
ANN2 Standard back-propagation max_epoch=1,000, lr=0.01
GBM1 Squared loss ntrees=1,000, max_depth=20, bag_frac=0.5, lr=0.01
GBM2 Laplace loss ntrees=1,000, max_depth=20, bag_frac=0.5, lr=0.01
GBM3 T-distribution loss ntrees=1,000, max_depth=20, bag_frac=0.5, DF=4, lr=0.01
RF Classification & regression trees ntrees=1,000, mtry=5
Fig. 5. Deep learning computational time. The red color indicates training time by
minute, the blue color indicates forecasting time per data point by millisecond. The
statistics are grouped by lead time in columns and by resolution in rows.

Fig. 6. Averages of forecast RMSEs [W/m2], MBEs [W/m2], and FSSs [%] over different
ead times. The colors represent the four input lengths.

.3. Baseline and benchmark models

A collection of six machine learning methods, in conjunction with
he persistence of cloudiness (PoC) method, are used as benchmarks
nd baseline. The machine learning methods are selected from a larger
olume of methods based on their performance in the 10-fold cross-
alidation study. The selected machine learning benchmarks include
wo ANNs, three gradient boosting machine methods (GBMs), and

random forest (RF) method. The hyperparameters and parameters
f the benchmark models are listed in Table 2. Additional detailed
arameter information can be referred in Refs. [48–52]. The inputs to
achine learning models include GHI, DNI, DHI, clear sky GHI, clear

ky DNI, clear sky DHI, dry bulb temperature, wind chill temperature,
elative humidity, wind speed, peak wind speed, pressure in the current
nd past hour(s). The same data partition is applied to the benchmark
odeling. Hence, the total data lengths are slightly longer than the

mage-involved models. The PoC method assumes a constant CSI within
he forecasting lead time [53,54].
6

l

4. Results

Case studies are conducted on high performance computing (HPC)
GPU nodes in the Texas Advanced Computing Center (TACC)4 Mav-
erick2 system at the University of Texas System. Each TACC node
contains 16 Intel(R) Xeon(R) CPUs and 4 Nvidia GTX 1080-TI GPUs.
The benchmark case studies are conducted on Ganymede HPC nodes
at the University of Texas at Dallas, which has 40 Intel(R) Xeon(R)
CPUs. The SolarNet and benchmark models are implemented using the
Keras library with Tensorflow backend in Python 3.7.0 and
the caret package in R. Detailed experiment implementations can
be found in our SolarNet GitHub repository. The computational time
of deep learning training and forecasting is shown in Fig. 5. Three
recommended evaluation metrics, the root mean square error (RMSE),
the RMSE-based forecast skill score (FSS), and the mean bias error
(MBE), are used to evaluate the overall performance of models [55].

4.1. Overall performance

The overall performance of intra-hour solar forecasting models is
shown by the averages of each metric over different lead times in
Fig. 6. Generally, all of the machine learning methods have superior
performance compared to the PoC method at such short lead time
forecasting. This is evidenced by the positive FSSs. Compared to shal-
low machine learning, the two deep learning methods further improve
forecasting accuracy. The SCNN model has the highest 28.49% FSS
among all models with a competitive MBE. Tables 3–5 break down the
averages into metrics based on lead times and input sequence lengths.
First, in most cases, the machine learning models have positive FSSs,
although the PoC method is often considered sufficiently accurate at
these timescales. Therefore, it is suggested to include meteorological
parameters in intra-hour solar forecasting if they are available. More
importantly, the SCNN models yield the most accurate solar forecasts,
which encourages total sky imagers (TSIs) to be used as a comple-
mentary or even an alternative solar forecasting sensor. This will be
especially beneficial to distributed solar systems, considering the low
equipment and installation cost of the TSIs.

The forecast RMSEs increase with the lead time as expected. In
shallow machine learning, this can be explained by the decreased
autocorrelations within the meteorological parameters, especially in
the GHI series itself. Similarly in deep learning, autocorrelations of
the image sequence decay as the time lag increases. The SCNN models
generate more accurate forecasts than shallow learning models in all
cases, while the 3DCNN models perform better in most cases. The
average FSS of the SCNN model is 26.45%. Considering the challenge of
improving forecasting accuracy in such short lead times, the improve-
ments provided by the developed deep learning models are significant.
When compared to RF, the best shallow learning method, the forecast
RMSEs are reduced by around 7%, which is still considerable.5

By comparing the two deep learning models, it is also observed that
the SCNN performs better than the 3DCNN in these solar forecasting
tasks. The first reason is that 3DCNNs are computationally inefficient

4 http://www.tacc.utexas.edu.
5 Improving accuracy by even 1% is a great achievement in deep

earning [56].

https://github.com/fengcong1992/SolarNet
http://www.tacc.utexas.edu
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Fig. 7. The joint distributions of forecast versus observed GHI. For a higher contrast, the color scheme is based on the logarithm of scatter point frequency. The plots group
distributions by lead times in columns and image sequence lengths in rows.
Table 3
Forecast RMSEs [W/m2] of the best SCNN, 3DCNN, and benchmark models.
 [min] Sequence Length ANN1 ANN2 GBM1 GBM2 GBM3 RF PoC SCNN 3DCNN

10

1 94.52 88.92 87.23 87.16 88.89 85.36 90.71 79.90 81.82
2 85.28 88.71 87.80 87.67 89.53 83.66 90.77 71.30 80.28
4 84.51 90.97 88.91 88.79 91.04 85.39 91.68 73.76 87.38
8 94.49 147.89 93.07 92.98 95.53 90.26 94.11 81.67 92.04

20

1 111.53 115.71 113.70 113.77 116.50 108.58 122.85 103.53 102.87
2 132.79 122.81 114.09 114.05 117.17 108.98 123.63 98.53 101.73
4 110.47 121.09 115.28 115.13 118.99 109.60 123.21 98.27 106.86
8 121.12 132.17 120.96 120.84 125.45 117.33 125.15 107.35 116.69

30

1 123.42 207.87 127.22 127.16 130.30 121.01 144.66 111.07 118.16
2 119.41 143.39 127.52 127.35 130.74 119.59 145.67 109.33 115.73
4 130.69 126.96 128.90 128.60 132.64 121.63 147.55 111.72 121.11
8 130.12 137.62 135.70 135.43 140.66 130.52 140.67 113.69 127.89

40

1 132.24 144.59 136.64 136.36 140.00 127.34 167.42 118.98 127.24
2 142.73 148.00 136.92 136.56 140.33 127.54 168.50 119.35 127.58
4 157.26 158.46 138.54 138.09 142.12 129.70 170.83 121.48 126.67
8 144.06 182.62 146.56 146.07 151.32 140.21 151.59 126.66 137.21

50

1 138.85 150.71 144.22 143.58 147.36 132.75 192.94 130.67 136.38
2 148.82 166.43 144.63 144.01 147.77 133.32 194.18 127.49 129.49
4 136.49 148.22 146.32 145.65 149.41 135.62 196.84 131.29 137.43
8 148.34 160.51 155.61 154.82 159.82 146.86 161.61 136.10 146.43

60

1 162.98 153.64 150.92 150.01 153.91 136.96 221.82 133.12 135.49
2 145.11 198.57 151.37 150.52 154.45 137.75 223.20 135.43 137.05
4 216.87 228.69 153.17 151.99 156.00 140.29 226.24 137.55 142.77
8 157.38 162.25 164.01 162.69 167.57 152.97 183.85 142.95 148.23

Note: The maximum GHI in the testing dataset is 1,268.393 W∕m2, while the maximum GHI in the entire dataset is 1,319.328 W∕m2. Due to
the data alignment, PoC forecast RMSE differs with sequence length for the same lead-time forecasting.
to train. All the matrix operations in 3DCNN models are 3-dimensional,
resulting in more parameters than 2-dimensional CNNs with similar
numbers of layers. The second reason is the nonisotropical nature of
the 3D sky image input. Different from other 3D images with three
isotropic dimensions (i.e., computed tomography images), sky images
in 3DCNNs consist of temporally changing pixels in the third dimen-
sion. This will conflict with the isotropic kernels used in the 3DCNN
models. Nevertheless, their competitive performance motivates further
development in the following research.

4.2. Detailed comparison

Beyond the metrics of overall evaluation, we also analyze the fore-
casting results intuitively. The first approach is the joint distribution
of observations and forecasts, which communicates the model perfor-
mance in a time-independent manner. The goodness of forecasts is
usually assessed by the dispersion of scatter points along the identity
line [55]. The joint distributions of deep learning forecasts vs. observa-
tions and benchmark forecasts vs. observations are depicted in Figs. 7
7

and 8, respectively. Fig. 7 separates distributions of two deep learning
models in two sub-figures, while Fig. 8 groups the distributions by
input length in four sub-figures. The SCNN models show the best joint
distributions. First, the SCNN distributions have the best concentration
along the diagonal. Second, the SCNN distributions have more balanced
probabilities on both sides of the identity line.

From visual inspection, the 3DCNN models produce the second
best distributions, followed by the RF models. The qualitative analysis
is consistent with the evaluation metrics. Joint distributions of the
3DCNN and RF models are more dispersed than those of the SCNN. For
instance, the 3DCNN with 8 images generates more underpredictions
than its SCNN counterpart in 10MA forecasting. This is reflected by
more points in the bottom right part of the associated facet in Fig. 7.
This is more apparent in the RF distributions, where the density con-
tours are skewed from the diagonal. The joint distributions also explain
why other models perform worse. For example, the two ANN methods
fail to capture the down ramps corresponding to the cloudy conditions,
as revealed by the multimodal patterns in the joint distributions. GBM
models place too much emphasis on the small GHI values to avoid
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Table 4
Forecast MBEs [W/m2] of the best SCNN, 3DCNN, and benchmark models.
 [min] Image No. ANN1 ANN2 GBM1 GBM2 GBM3 RF PoC SCNN 3DCNN

10

1 23.64 −5.39 −0.38 −0.65 −2.02 −1.32 4.22 −1.37 19.91
2 6.74 −6.24 −0.79 −1.13 −2.48 −0.03 4.22 1.29 6.08
4 1.13 −12.04 −1.55 −1.91 −3.39 0.07 3.18 10.35 2.31
8 13.12 56.54 −3.17 −3.49 −4.69 −2.02 2.52 9.15 1.94

20

1 −7.41 9.86 −0.49 −0.41 0.15 −1.10 10.12 −13.18 10.01
2 40.12 −28.42 −1.43 −1.13 −0.48 −0.44 10.33 9.22 −1.32
4 5.00 −19.33 −3.03 −2.56 −2.30 −0.28 8.13 −5.86 1.09
8 −6.63 −20.42 −6.22 −5.79 −4.85 −3.17 5.42 10.35 −4.90

30

1 −2.89 −77.21 −0.96 0.42 2.79 −2.24 17.11 1.14 −19.49
2 −6.21 −38.40 −2.13 −0.48 2.13 −0.76 17.43 4.26 −2.66
4 21.58 −10.58 −4.48 −2.62 −0.76 −1.59 17.88 −49.17 0.29
8 −11.88 −23.78 −9.34 −7.26 −5.54 −5.78 8.65 6.66 6.30

40

1 −17.61 28.96 −1.23 1.08 4.79 −0.17 24.81 3.63 −1.61
2 −29.19 −36.05 −2.70 −0.23 3.82 −0.76 25.19 −2.66 10.60
4 −36.37 −30.31 −5.68 −3.11 0.62 −2.80 25.97 −2.92 11.70
8 2.59 −56.42 −12.29 −9.06 −5.91 −8.21 12.59 −4.29 8.85

50

1 16.25 −28.99 −1.70 0.84 5.67 −1.02 32.85 −11.75 −14.07
2 −8.79 −44.02 −3.49 −0.66 4.56 −2.05 33.31 8.30 2.79
4 −1.76 −29.78 −7.05 −3.85 0.93 −6.01 34.28 −6.45 −1.08
8 −20.52 −40.17 −15.35 −11.51 −6.71 −12.26 18.10 19.58 7.41

60

1 36.68 −15.45 −2.30 0.65 6.01 −1.41 41.11 −6.18 −6.86
2 −1.62 −66.35 −4.27 −0.85 4.80 −2.72 41.65 −8.14 4.38
4 80.22 −89.03 −8.65 −4.64 1.50 −6.99 42.79 2.84 4.44
8 −29.40 −27.53 −18.69 −13.94 −7.10 −15.20 28.87 −1.23 0.30
Table 5
Forecast skill scores [%] of the best SCNN, 3DCNN, and benchmark models.
 [min] Image No. ANN1 ANN2 GBM1 GBM2 GBM3 RF SCNN 3DCNN

10

1 −4.20 1.97 3.84 3.91 2.01 5.90 11.92 9.80
2 6.05 2.27 3.27 3.42 1.37 7.83 21.45 11.56
4 7.82 0.77 3.02 3.15 0.70 6.86 19.54 4.69
8 −0.40 −57.15 1.11 1.20 −1.51 4.09 13.21 2.20

20

1 9.21 5.81 7.45 7.39 5.17 11.62 15.73 16.26
2 −7.41 0.66 7.72 7.75 5.23 11.85 20.30 17.71
4 10.34 1.72 6.44 6.56 3.43 11.05 20.24 13.27
8 3.22 −5.61 3.35 3.44 −0.24 6.25 14.22 6.76

30

1 14.68 −43.70 12.06 12.10 9.93 16.35 23.22 18.32
2 18.03 1.57 12.46 12.58 10.25 17.90 24.94 20.55
4 11.43 13.95 12.64 12.84 10.11 17.57 24.28 17.92
8 7.50 2.17 3.53 3.73 0.01 7.22 19.18 9.09

40

1 21.01 13.64 18.38 18.55 16.38 23.94 28.93 24.00
2 15.29 12.17 18.74 18.96 16.72 24.31 29.17 24.29
4 7.94 7.24 18.90 19.17 16.81 24.08 28.89 25.85
8 4.97 −20.47 3.32 3.64 0.18 7.51 16.44 9.49

50

1 28.03 21.89 25.25 25.58 23.62 31.20 32.28 29.32
2 23.36 14.29 25.52 25.84 23.90 31.34 34.35 33.31
4 30.66 24.70 25.67 26.01 24.10 31.10 33.30 30.18
8 8.21 0.68 3.71 4.20 1.11 9.13 15.79 9.39

60

1 26.53 30.74 31.96 32.37 30.61 38.26 39.99 38.92
2 34.99 11.03 32.18 32.56 30.80 38.28 39.32 38.60
4 4.14 −1.08 32.30 32.82 31.05 37.99 39.20 36.89
8 14.40 11.75 10.79 11.51 8.86 16.80 22.24 19.37
large biases, which results in underpredictions for small GHI values and
truncation of the forecasted GHI distributions.

Another way to interpret forecast quality is by plotting actual
and forecast GHI time series. Fig. 9 exemplifies time series of three
days consisting of sunny, partly cloudy, and cloudy conditions. To
investigate the deep learning failure mode, testing days are ranked by
forecast RMSE. A day when the SCNN model performs unsatisfactorily
is selected from the worst 10 days and shown in Fig. 9(c). In sunny
weather conditions (Fig. 9(a) and some time of Fig. 9(b)), the SCNN
forecasts are extremely accurate, as illustrated by their overlaps with
8

GHI actuals. In partly cloudy conditions (most time of Fig. 9(b) and
some time of Fig. 9(c)), the SCNN model is robust to the small ramps
caused by the incoming clouds. However, the SCNN models, like all
the forecasting models, have forecast errors, most of which occur in
inclement weather conditions. Fig. 9(c) exemplifies a bad-performing
day. It is observed that the SCNN performance is still good during
partly cloudy hours. However, from 14:00 to 16:00 when clouds are
developing, the SCNN model overpredicts GHI and yields large errors.
After 16:00, the SCNN model realizes this is a cloud development
period and quickly adjusts itself to the cloudy condition. Other large
errors that happen less often are due to sky images with low quality

(to be further discussed in Section 5).
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Fig. 8. Joint distributions of benchmark forecast GHI versus observed GHI. For a higher contrast, the color scheme is based on the logarithm of scatter point frequency.
4.3. Sensitivity analysis

Image resolution has a direct impact on deep learning models,
which differs with different tasks, models, and experiment setups.
Training with low-resolution images may suffer from missing details.
On the other hand, it will take longer to train models with higher
resolution images, and may also get worse results due to the increased
model complexity. Like training more complex models, the issue of
increasing image resolution not necessarily improving forecasting ac-
curacy can perhaps be due to not just the risk of overfitting but
also the increased complexity of the model parameter optimization
problem. This research conducts experiments with the same setups
except for image resolutions. Three different image resolutions are
tested, i.e., 256×256, 128×128, and 64 × 64. Fig. 10 compares the
three resolutions in groups of six lead times. Images with a 128 × 128
resolution yield the most accurate forecasts in almost all cases since
the triangle points are always the lowest point in each polygon. The
256 × 256 images contain redundant pixels that are not critical to solar
forecasting. This is possibly due to that deep learning models learn the
cloud coverage features from sky images for solar forecasting, which
does not need that much detail (e.g., accurate edge and shape of the
clouds). However, 64 × 64 images lose too much detail. Therefore, it is
recommended to use 128 × 128 sky images for similar solar forecasting
9

tasks. But it is also strongly suggested to perform image resolution
analysis for a specific model and experiment setup.

The length of the sequence of images6 is another hyperparameter
that affects forecast accuracy. An image sequence consisting of more
sky images is able to capture more cloud movements. But sky images
of increasing lag may have weaker correlations with the current and
future images. We investigate the effect of image sequence length on
forecast accuracy. Four different image lengths, i.e., 20, 21, 22, 23, are
included in the case studies. Fig. 11 groups lead times in six polygons
and compares the three image lengths within the same group. It is
found that using 2 images (10-min temporal resolution) is the best
choice for our intra-hour solar forecasting. Adding more sky images
will probably increase the model complexity, therefore deterring the
model to learn the most effective latent patterns. This is similar to the
phenomenon of using images with higher resolutions. However, using
a single image does not represent the local cloud dynamics.

We have shown examples through time series plots of how the
deep learning models have distinct performance in different weather

6 Two similar terms are used in the paper: image sequence length and input
length. The first term means the length of input to image-involved models,
while the latter term indicates either/both image sequence length or/and
numerical measurement length.
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Fig. 9. Forecast and actual GHI time series. Both the numerical and image time series have a 10-min resolution. For better illustration, points and images are shown every
half-hour. A typical bad-performing day (2016-08-29) is selected intentionally to investigate the failure mode of deep learning models.
Fig. 10. Sensitivity analyses on image resolutions. The results are based on models
trained with 2 images. Points with smaller RMSEs in each polygon represent models
with better image resolution options.

Table 6
Forecast errors of the best SCNN and 3DCNN models by CSI quartile groups.

SCNN 3DCNN

RMSE [W/m2] MBE [W/m2] RMSE [W/m2] MBE [W/m2]

Q1 85.57 33.77 108.00 66.65
Q2 88.80 15.68 87.42 14.09
Q3 44.45 −17.71 54.72 −22.52
Q4 57.35 −25.32 69.31 −31.36
10
Fig. 11. Sensitivity analyses on image lengths. The results are based on models trained
with 128 × 128 images. Points with smaller RMSEs in each polygon represent models
with better image sequence length options.

conditions. Error characteristics in Fig. 12 and Table 6 confirm the
finding statistically. Groups Q1–Q4 are divided based on CSI quartiles,
which means Q1 and Q2 contain more cloudy or partly cloudy hours,
while Q3 and Q4 contain more sunny hours. Such categorization can
result in fairer comparisons than using other CSI thresholds since the
sample sizes are identical. It is shown from the peak of distributions
that the deep learning models provide better forecasts for higher CSI
hours, which is also proven by the smaller RMSEs in Q3 and Q4
groups in Table 6. There is a larger probability of overprediction for
lower CSI, as indicated by the right tails of distributions and positive
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Fig. 12. Error distributions of the SCNN model in four CSI groups. Q1–Q4 divided by
SI quartiles. Q1 and Q2 contain more cloudy or partly cloudy hours, while Q3 and
4 contain more sunny hours. Forecasts of the 10MA SCNN model with two 128 × 128

mages are used for demonstration.

BEs. This stimulates the bias correction in post-processing and sep-
rate forecasting tasks according to weather conditions in our future
esearch.

In the past, CNNs were considered as a black box method with
ow transparency, until the recent development of deep learning in-
erpretability visualizations. The feature map provides insight into the
nternal representation that deep learning has at a given point within
he model. A feature map is the output of one filter applied to its
nput, i.e., sky images or previous feature maps depending on the depth.
n this research, feature maps are used to interpret what features are
xtracted by deep learning models from input sky images and how these
eatures are developed across different layers of the models. Fig. 13(a)
hows the filtered feature maps convolved by all the 64 filters. It is
bserved that deep learning models learn to extract various features
rom sky images by the first convolutional layer. For example, clouds
re represented by different textures in most feature maps, such as
he feature maps of Filter21 (Row 2, Column 5) and Filter32 (Row 2,
olumn 16). Some filters focus on the background sky (e.g., Row 3,
olumn 5 and), while others seek the position of the sun (e.g., Row
, Column 1). The binary ROI mask and the solar tracker are also
rocessed by some filters, such as Filter33 (Row 3, Column 1) and
ilter62 (Row 4, Column 14). Fig. 13(b) visualizes the latent feature
earning process across the deep learning layers, where a representative
eature map is selected from each intermediate convolutional layer. The
eature maps from the first few layers (e.g., layers in Block 1) retain
ost of the information in the sky image. In deeper layers, feature
aps look less like the original sky image and more like an abstract

epresentation, since they encode useful features more closely related
o the GHI forecasts.

. Discussion

The developed sky image-based deep learning methods show
romise for intra-hour solar forecasting. But this kind of forecasting
echnique is still at an early stage of widespread deployment. This
ection discusses the limitations of the present method, opportunities
or deployment, and future work.

This research focuses on CNN methods for sky image-based intra-
our solar forecasting. Although showing superior accuracy than state-
f-the-art benchmarks, the methods are found to have distinct per-
ormance under different weather conditions. First, it is worthwhile
o train an individual model for each weather condition. Second, we
ill explore fusing sky images with other meteorological parame-
11

ers through the multi-head neural networks in future work. Third, a
ther deep learning architectures, such as recurrent neural networks,
ill also be investigated to process sky image sequences in future

esearch. Finally, the uncertainty associated with the intra-hour fore-
asts will be quantified through probabilistic forecasting (e.g., scenario
eneration [57]) in future research.

Like any data-driven research, sky image-based deep learning so-
ar forecasting requires plentiful, high-quality, and consistent data.
he deep learning models are relatively computationally inefficient to
rain, which requires large amounts of training data. It is suggested to
rain/validate sky image-based forecasting models with at least 2 years’
ata and test with another year of data. However, it is also interesting
o investigate the transferability of forecasting models trained at data-
ich locations to other sites. The image quality is also critical, which
an be demonstrated by Fig. 14. Low-quality images could introduce
ignificant bias. Therefore, it is important to calibrate the sky cameras
nd quality control images. The following camera and lens parameters
hould be calibrated and kept consistent, including the geometric align-
ent, exposure time, focal length, bit depth, and color balance. Quality

hecks should be performed to flag missing and defective images. It is
lso better to use a solar tracker to block the direct radiation and to
void lens flares [58,59]. Similar to the input sky images, the quality of
SI is also critical. We observed that CSI in this research could be larger
han 1, which is due to the larger GHI values than the clear sky GHI
alues. Please note that the same CSI series is used in the deep learning
odels and the benchmarks. Therefore, we consider the comparisons

onducted in this research are fair. However, it would be interesting
o investigate different clear sky models [60] and their impacts on the
orecasting models in future work.

Although it has been proven that sky cameras could help power
ystems from different perspectives, the deployment of sky cameras
s still at an early stage. Most solar plant operators rely only on me-
eorological measurements or even persistence methods for intra-hour
orecasting. It is strongly suggested to add sky cameras to the existing
eather stations of solar plants to provide another source of data. More

mportantly, compared to utility-scale solar plants where sky cameras
erve as complementary weather devices, sky cameras could play a
ore critical role in behind-the-meter PV systems. This research has

hown that by only using sky images, deep learning is able to provide
ore accurate intra-hour forecasts than commonly utilized machine

earning techniques. Considering the low equipment costs [58,61], sky
ameras could potentially be an alternative to meteorological devices
or in situ weather measurement. 5G and cloud computing technologies
ake sky image-based behind-the-meter solar forecasting potentially

ffordable/valuable for both customers and utilities.

. Conclusion

Accurate solar forecasting is critical to power system operations.
here is a growing need to facilitate intra-hour solar forecasting. This
esearch bridges the gaps in sky image-based operational intra-hour so-
ar forecasting by developing two deep convolutional neural networks
CNNs) tailored for global horizontal irradiance prediction. Both CNN
onfigurations use state-of-the-art deep learning techniques and require
nly sky images as input. The first CNN method processes stacked sky
mages in 2-dimensional convolution operations and the second CNN
ethod directly handles sky image sequence by 3-dimensional convolu-

ion operations. Numerical experiments on 6 years’ data show that the
wo methods outperform the persistence of cloudiness (PoC) baseline
nd state-of-the-art machine learning benchmarks. The average forecast
kill score of the two CNNs is around 20% for intra-hour solar forecast-
ng and the best model (i.e., SCNN) has an average forecast skill score of
8.49% over PoC. The developed CNN models are sensitive to weather
onditions. They generally perform well in sunny and partially cloudy
onditions. The CNN models can quickly adjust after underperforming
n the few first instances of cloudy conditions. Forecasting quality is

ffected by both image resolution and image sequence length. Our
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Fig. 13. Filtered sky image feature maps by the 10 MA SCNN model. A sky image at 2016-06-19 05:00:00 is randomly selected for the demonstration. All the 64 filtered feature
maps are included in (a) to show the diversity of filters. A feature map is selected from each convolutional layer to show the feature development by hierarchical representations
in (b), where feature maps are grouped in columns by the feature learning block and in rows by the layer order.
Fig. 14. Defective sky images.
research found that using two images with a resolution of 128 × 128
provided the most accurate forecasts at the case study location. We
also interpreted the feature attributions that CNN models learned by
the feature map visualization.
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