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A B S T R A C T

Ramping products have been introduced or proposed in several U.S. power markets to mitigate the impact
of load and renewable uncertainties on market efficiency and reliability. Current methods often rely on
historical data to estimate the requirements of ramping products and fail to take into account the effects of
the latest weather conditions and their uncertainties, which could lead to overly conservative or insufficient
requirements. This study proposes a k-nearest-neighbor-based method to give weather-informed estimates of
ramping needs based on short-term probabilistic solar irradiance forecasts. Forecasts from multiple sites are
employed in conjunction with principal component analysis to derive numerical classifiers to characterize
system-level weather conditions. In addition, we develop a data-driven method to optimize the model
parameters in a rolling-forward manner. By using real-world data from the California Independent System
Operator, we design two metrics to evaluate method performance: 1) frequency of shortage and 2) oversupply
of ramping product. Our proposed method presents advantages in comparison with the baseline and a set of
benchmark methods: without compromising system reliability, it reduces system ramping requirements by up
to 25%, therefore improving both system reliability and economics.
1. Introduction

Ramping products have been introduced or proposed in several U.S.
power markets to mitigate the impact of rapid net load changes caused
by the increasing penetration of variable energy sources [1–5]. Like
many ancillary services, a key step in the scheduling process is to
determine the requirements of ramping product, which usually involves
trade-offs between market efficiency and system reliability. Too low or
too high requirements can pose a risk to system reliability or system
costs, respectively.

Historically, studies that co-optimize energy and ancillary services
can be divided into two categories based on how the requirements are
determined: endogenous and exogenous [6,7]. Endogenous methods
usually model the renewable and load uncertainties explicitly using a
variety of techniques [8], such as stochastic optimization [9–11], robust
optimization [12,13], and chance constraints [14,15]. These techniques
typically represent load and renewable energy uncertainties in the
form of probability distribution functions [16,17], scenarios [11,18],
uncertainty sets [13], or intervals [19], depending on the algorithms
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used to solve the models. These models commonly include reliability
targets as additional constraints, and the amount of required reserves
are then given when the model is solved [20]. Typical reliability metrics
include the loss-of-load-probability (LOLP) and the expected energy
not served (EENS) [21–24]. These metrics can be used directly to
construct model constraints, or used in conjunction with value of lost
load (VOLL) to create additional terms in the model objective function
by monetizing the loss [15]. The trade-offs between reliability and
system economics are usually examined to select the optimal reserve re-
quirements [25]. For example, in [14], a chance-constrained model was
used to optimize the needs of flexibility reserve based on a combined
metric that accounts for both procurement costs and loss costs due to
wind spillage and load shedding. A two-stage stochastic optimization
model was developed in [26] to explicitly consider the provision of
operating reserves, which outperformed traditional methods where
reserve requirements were given by certain percentages of peak load.
In [15], flexible ramping requirements were endogenously modeled
by considering the spatio-temporal correlation of wind power outputs
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Nomenclature

ANN Artificial neural network
BAU Business-as-usual
CAISO California Independent System Operator
CART Classification and regression tree
CNN Convolutional neural network
DL Deep learning
EENS Expected energy not served
FRP Flexible ramping product
GBM Gradient boosting machine
GHI Global horizontal irradiance
GRU Gated recurrent unit
kNN k-nearest-neighbor
LOLP Loss-of-load probability
LSTM Long short-term memory
MAE Mean absolute error
ML Machine learning
nMAE Normalized mean absolute error
PCA Principal component analysis
PV Photovoltaics
RF Random forest
RT Real time
RTED Real-time economic dispatch
RTUC Real-time unit commitment
SVR Support vector regression
VOLL Value of lost load

and demand, which are represented by covariance matrices and solved
as quadratically constrained programs. Ghaemi et al. [19] represented
solar and wind power output forecasts using intervals and solved them
by interval optimization. Nadermahmoudi et al. [18] represented load
and wind uncertainties by scenarios and obtained the FRP provided by
each generating unit in their studied system. In [21], a risk-limiting
economic dispatch scheme optimized the dispatch and provision of
ramping products under constraints upon LOLP. Although these models
can securely co-optimize the provision of energy and reserves of all
generating units, detailed uncertainty representation is usually required
at the bus level, which is computationally prohibitive for real-world
systems because of the curse of dimensionality. Note that although
endogenous methods have been proposed by many studies, they are
rarely adopted by real-world market operators.

Although these models can in theory identify a level of reserves
that is optimal for an assumed mathematical representation of system
reliability, in practice they can prove computationally prohibitive for
real-world systems because of the high dimension of scenarios needed
for uncertainty representation. The computational burden of endoge-
nous methods is at least one of the reasons that explains why none of
the US power system operators has followed such a method. Instead,
power system operators rely on exogenous methods. The exogenous
methods estimate system-level ancillary service requirements ex ante

ith lead times specific to particular markets. Unlike the endogenous
ethods, this approach has been widely adopted in real world and is

onstantly evolving. Traditionally, system operators use deterministic
ethods, where certain percentages of peak load are used as reserve
argins [27–29]. This method, despite its simplicity, usually fails

o satisfy system reliability standards owing to growing uncertainties
aused by increasing renewable penetration. Consequently, probabilis-
ic methods are sometimes adopted to estimate ancillary service needs
ased on the uncertainty levels of net load [30]. In these methods,
eserve requirements are determined to cover predefined confidence
2

intervals, which are usually selected to satisfy certain reliability stan-
dards [30]. Typically, the distributions are constructed from historical
data. For example, historical area control errors are used to determine
regulation requirements in the California Independent System Operator
(CAISO), and historical net load forecast errors are used in the Texas
power market to estimate non-spinning reserve requirements [31].
[17] used Gumbel copula to estimate the probabilistic distributions of
net load and set FRP requirements based on the derived uncertainty
demand curve.

Historical distributions are nevertheless highly static and usually fail
to reflect the latest system states and weather information, resulting
in overly conservative or insufficient requirements. CAISO conducted
a simulation study for 2019 and estimated that the coverage of re-
quirements determined through historical analysis was higher than
95% (target reliability level) [32]. The lack of weather information
has motivated system operators in the U.S. [32] and abroad [33] to
adopt methods that use wind, load, and solar forecasts as inputs to
statistical approaches to estimate reserve requirements. In [32], CAISO
used quantile regression with load, wind, and solar forecasts as inputs
to estimate FRP requirements and results showed that it would result
in higher or lower requirements compared to the historical approach
depending on system conditions. In [34], a multiple linear regression
model was developed to estimate regulating reserve requirements based
on predicted system conditions, including load and wind power. In the
recent decade, the value of probabilistic forecasts is being increasingly
recognized in power system applications [35]. In [36], probabilistic
wind and load forecasts were used to determine operating reserve
requirements based on trade-offs between reliability indices and pro-
curement costs. In [37,38], Etingov et al. showed how to reduce the
regulation requirements by employing probabilistic net load forecasts,
which were derived from probability distributions of multiple net load
components by convolution. Instead of performing convolution, [39]
also used probabilistic forecasts as input for generation of scenarios that
were later used to determine operating reserve requirements.

Probabilistic forecasts explicitly account for the uncertainty infor-
mation, which usually take a parametric form of probability distri-
butions, or non-parametric forms such as quantiles, uncertainty inter-
vals, and kernel density estimations [40,41]. Although probabilistic
forecasting is adopted in some markets, it is used primarily to im-
prove situational awareness and rarely plays any important role in the
decision-making process. In this study, we develop a data-driven flexi-
ble ramping product (FRP) requirement estimation methodology based
on probabilistic solar irradiance and power forecasts to dynamically
determine the system-level FRP requirements of CAISO. Specifically,
2-hour-ahead (2HA) probabilistic solar forecasts at selected sites in the
CAISO region are synthesized into a set of numerical classifiers to char-
acterize future weather conditions. We employ principal component
analysis (PCA) to reduce the dimension of high-dimensional classi-
fiers. A k-nearest-neighbor-based (kNN-based) method is then used to
construct distributions of net load forecast errors conditioned on the
latest weather conditions, which are used to give weather-informed
FRP requirements. Note that because of the high solar penetration in
the CAISO market, this study focuses primarily on solar uncertainty,
however, the proposed method can be extended by accounting for other
components of net load uncertainty, e.g., wind and load [42].

Our work represents a practical method that is easily implementable
and extensible by any power market operators. Particularly, the pro-
posed kNN-based method can also be used to define requirements for
other market products that depend on historical data, such as regulation
and non-spinning reserves. The main contributions of this paper in-
clude: (1) developing a systematic way to prepare, process, and extract
key features from probabilistic solar forecasts, which can be used by
market operators in conjunction with data-driven methods to make
weather-informed decisions; (2) demonstrating the trade-offs between
system reliability and market efficiency as different kNN parameters are

selected; and (3) modeling the selection of the optimal kNN parameters
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as a multi-objective optimization problem and developing a method to
dynamically select the optimal solutions.

The remainder of this paper is organized as follows. Section 2 de-
scribes the current implementation of FRP in CAISO (baseline) and the
proposed kNN-based method. Section 3 further details the experimental
setup, including the definition of numerical classifiers, reduction of
multi-dimensional classifiers, dynamic selection of model parameters,
and benchmark models. Section 4 presents the results using metrics
indicative of system reliability and oversupply. Section 5 concludes.

2. Methodology

The FRP is designed to help power systems mitigate the impact of
net load changes on system operations. Specifically, market operators
reserve sufficient rampable capacities from controllable resources for
future dispatch intervals to counteract expected and unexpected net
load changes and maintain power balance in compliance with relia-
bility standards. By definition, the FRP requirements consist of two
separate parts: (1) the variation part, which is the system-wide net load
movement between two adjacent time intervals, and (2) the uncertainty
part, which represents the net load forecast error [1,3]. Currently, both
CAISO and the Midcontinent Independent System Operator determine
upward and downward FRP requirements independently, with separate
prices and quantities, and they rely on historical data to estimate
the uncertainty requirements. This study focuses on the uncertainty
component of the FRP in the 15-min real-time (RT) market in CAISO.
Note that the method can be extended to the other markets with similar
definitions.

Because net load is expressed as a linear combination of gross
system-wide load, wind power, and solar power, net load forecast
errors are driven by forecast errors of all terms. Forecast errors of
renewable resources, however, typically account for disproportionally
greater shares. It is estimated that CAISO’s solar power uncertainty
contributes at least half of overall net load uncertainty [43], therefore,
we focus on the uncertainty component caused by solar power only,
and we assume perfect foresight for wind and load. Although neglecting
wind and load uncertainties could lead to underestimation of total net
load uncertainty, it allows us to better demonstrate our method, and
we do not think it introduces systematic errors.

2.1. Baseline: From the current CAISO implementation

In CAISO, the FRP in the 15-min RT market aims to cover the
difference between net load forecasts made in the 15-min real-time
unit commitment (RTUC) and in the 5-min real-time economic dispatch
(RTED). Because each 15-min interval consists of three 5-min inter-
vals, CAISO calculates three net load forecast errors for each 15-min
interval—i.e., the differences between the binding net load forecasts of
the constituent 5-min intervals and the advisory net load forecast of the
15-min interval, as shown in Fig. 1. Then, CAISO uses the maximum
positive error as the upward error (𝜖𝑈𝑑,𝑡) and the minimum negative
error as the downward error (𝜖𝐷𝑑,𝑡), which are also the FRP needs. They
can be expressed as:

𝜖𝑈𝑑,𝑡 = max
𝑖=0,…,2

(𝑁𝐿
5
𝑑,3𝑡−𝑖 −𝑁𝐿

15
𝑑,𝑡) (1)

𝐷
𝑑,𝑡 = min

𝑖=0,…,2
(𝑁𝐿

5
𝑑,3𝑡−𝑖 −𝑁𝐿

15
𝑑,𝑡) (2)

here 𝑡 is the index of the 15-min RTUC interval in day 𝑑; and 3𝑡−𝑖, 𝑖 =
,… , 2 are the indices of the three constituent RTED intervals. The net
oad forecast for the RTUC and RTED intervals are denoted by 𝑁𝐿

15
𝑑,𝑡

nd 𝑁𝐿
5
𝑑,3𝑡−𝑖, respectively.

Using the net load forecast errors defined, we can construct separate
istograms from history data to determine the upward and downward
RP requirements. In CAISO, histograms are constructed hourly by
3

sing historical net load forecast errors in the same hour from 40 c
Fig. 1. Net load forecast error in CAISO’s 15-min RT market. Note that 𝑇 is the starting
time of the 𝑡th 15-min interval. FRP requirements are needed at least 37.5 min prior
to 𝑇 to run RTUC # 𝑡 − 1.

revious weekdays if 𝑑 is a weekday, or 20 previous weekends if 𝑑
s a weekend. CAISO distinguishes between weekdays and weekends
ecause human behaviors result in different load profiles for these two
ets of days. Because our study assumes perfect foresight for load, and
ecause solar uncertainty is not affected by human behavior, we make
o such distinction in our baseline, i.e., the number of historical days

is the same for both weekdays and weekends. Note that although 𝐾
is fixed in CAISO’s implementation, we wish to examine the sensitivity
of the baseline to 𝐾 over a range of different values, therefore, given
hour ℎ in day 𝑑, we construct a histogram of upward errors from 𝐾
previous days and derive the following empirical distribution function:

𝐹𝑈
𝑑,ℎ(𝑥) = E𝜖∈𝑈𝑑,ℎ

[𝟏(𝑥 ≥ 𝜖)] (3)

where 𝟏(𝑥 ≥ 𝜖) is the indicator function, E is the expectation function,
and 𝑈

𝑑,ℎ represents the set of 4𝐾 historical samples of maximum net
oad forecast errors in hour ℎ from 𝐾 previous days (note that one hour
ncludes four upward errors):
𝑈
𝑑,ℎ = {𝜖𝑈𝑑−𝑖,4ℎ−𝑗 |𝑖 = 1,… , 𝐾, 𝑗 = 0,… , 3} (4)

e use the 97.5th percentile as the upward FRP requirement by taking
he inverse of 𝐹𝑈

𝑑,ℎ:

�̂�𝑃
𝑈
𝑑,ℎ = 𝐹𝑈−1

𝑑,ℎ (0.975) (5)

Similarly, we construct the empirical distribution function of down-
ard errors 𝐹𝐷

𝑑,ℎ(𝑥) and use the 2.5th percentile as the downward FRP
equirement:

�̂�𝑃
𝐷
𝑑,ℎ = 𝐹𝐷−1

𝑑,ℎ (0.025) (6)

CAISO uses historical data to construct histograms of net load
orecast errors because of its simplicity to implement; however, the
istorical data often fails to reflect the latest weather conditions, po-
entially resulting in overly conservative or insufficient ramping needs.
ig. 2 compares the realized net load forecast errors with the published
RP requirements from 2 days in August 2019 in CAISO. Because the
days are close in time (5 days apart), the FRP requirements differ by

ess than 1% because of similar histograms in use, whereas the solar
ower profiles imply drastically different weather conditions, which
otentially explain the greater uncertainty needs in the cloudy day
han the sunny day; therefore, if similar FRP amounts are procured, the
ystem could experience a shortage of FRP in the cloudy day, hence a
ompromised reliability level, and the over-procurement in the sunny
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Fig. 2. Comparison of realized net load forecast errors with the published FRP requirements in CAISO.
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day could incur unnecessary costs. This observation motivates the need
for the latest weather information in estimating FRP requirements,
which we pursue in this paper using probabilistic solar irradiance
forecasts.

2.2. The kNN-based method

The kNN-based method can be viewed as a direct extension of
CAISO’s original implementation since both methods rely on historical
data, however, in contrast to the baseline, the kNN-based method
constructs weather-conditioned histograms by using probabilistic solar
forecasts. As a non-parametric classification technique, kNN has been
widely adopted to improve the performance of forecasts in many
fields, such as wind speed, wind power, solar irradiance, and solar
power [44–48]. The main idea of kNN is to label all training data with
select features and pinpoint a new data point by using the 𝐾 closest
neighbors in the feature space [49]. Using the closest neighbors instead
of the entire training data set can potentially improve the forecast
performance.

In our case, the data points to be predicted are net load forecast
errors, which are affected by weather conditions; therefore, given prior
net load forecast errors and their associated weather conditions, we use
the weather forecasts of a future hour to identify the 𝐾 most similar
historical hours and use their net load forecast errors to construct
predictive distributions of the future FRP requirements. The process of
the kNN-based method is given below.

2.2.1. Characterize the weather conditions
Power output from photovoltaic (PV) plants is affected by many

factors, including technical specifications of solar panel arrays and
meteorological parameters. Because the conversion from solar irradi-
ance to electricity is completely deterministic and predictable, solar
irradiance uncertainty is the primary source of uncertainty. Here, we
use probabilistic solar irradiance forecasts at selected sites in CAISO to
characterize the weather conditions. Given hour ℎ in day 𝑑, we define
a set of numerical classifiers 𝐱𝑐𝑑,ℎ ∈ R𝑛 based on the forecasts within
hat hour. Detailed derivation of all classifiers are given in 3.1.

.2.2. Distance measures
To use the kNN method, we need to choose a distance measure to

haracterize the similarity of any two classifiers. Because classifiers are
n the form of 𝑛-dim vectors, we use Euclidean distance in this study.
sing classifier 𝑐, the similarity of the weather conditions between the

arget hour (𝑑0, ℎ) and a historical hour (𝑑𝑖, ℎ) is:

𝑐 𝑐 𝑐
4

(𝑑0 ,𝑑𝑖),ℎ
= ‖𝐱𝑑0 ,ℎ − 𝐱𝑑𝑖 ,ℎ‖2 (7) 𝑤
.2.3. Determine the FRP requirements
Upon calculation of the distances, we sort all historical days in an

scending order based on their similarities to the target hour in terms
f 𝓁𝑐

(𝑑0 ,𝑑𝑖),ℎ
, and we select the top 𝐾 days:

𝑐,𝐾
𝑑0 ,ℎ

= {𝑑1,… , 𝑑𝐾 |𝓁
𝑐
(𝑑0 ,𝑑1),ℎ

≤ 𝓁𝑐
(𝑑0 ,𝑑2),ℎ

≤ ⋯ ≤ 𝓁𝑐
(𝑑0 ,𝑑𝐾 ),ℎ} (8)

Then, the set of upward and downward net load forecast errors condi-
tioned on the solar forecasts are given by:

𝑈,𝑐,𝐾
𝑑0 ,ℎ

= {𝜖𝑈𝑑,4ℎ−𝑗 |𝑑 ∈ 𝑐,𝐾
𝑑0 ,ℎ

, 𝑗 = 0,… , 3}

𝐷,𝑐,𝐾
𝑑0 ,ℎ

= {𝜖𝐷𝑑,4ℎ−𝑗 |𝑑 ∈ 𝑐,𝐾
𝑑0 ,ℎ

, 𝑗 = 0,… , 3}
(9)

Last, 𝐹𝑈
𝑑,ℎ(𝑥) and 𝐹𝐷

𝑑,ℎ(𝑥) can be given by (3), from which 𝐹𝑅𝑃
𝑈
𝑑,ℎ and

𝐹𝑅𝑃
𝐷
𝑑,ℎ can be calculated.

3. Experiments

3.1. Definition of classifiers

Ground solar irradiance is jointly determined by sun position and
local cloudiness levels. Because the sun positions can be accurately
calculated given the time of year, cloud-induced uncertainty is the
major contributing factor to solar irradiance uncertainty. In the liter-
ature, the clear-sky index is often used to reflect cloudiness levels [50].
It is obtained by normalizing measured global horizontal irradiance
(GHI) by clear-sky GHI. Here, the predicted clear-sky index in a 15-min
interval 𝑡 in day 𝑑 can be given by:

𝑘𝛼𝑑,𝑡 =
𝐼𝛼𝑑,𝑡
𝐼0𝑑,𝑡

(10)

here 𝐼0𝑑,𝑡 denotes clear-sky GHI and 𝐼𝛼𝑑,𝑡 is the 𝛼th percentile of the
HI prediction. Because 𝑘𝛼𝑑,𝑡 could approach infinity as a result of low
0
𝑑,𝑡 magnitude during sunrise and sunset, we consider only the time
ntervals when the solar elevation is greater than 3◦. Here, we use the
neichen model to calculate clear-sky GHI [50].

Although the clear-sky index can reflect the cloudiness level, it is
sually insufficient to accurately characterize the weather conditions.
or example, a cloudy sky and an overcast sky might have similar clear-
ky indices, whereas solar irradiance is more uncertain in a cloudy day.
he other indicator of uncertainty levels in probabilistic forecasts is the
ize of predictive intervals, because larger predictive intervals usually
ndicate greater uncertainty levels. Since solar irradiance is a function
f time-of-day, its predictive interval is also affected by time. To remove
he time dependency of solar irradiance, we use the predictive intervals
f clear-sky indices to measure the forecast uncertainties. Specifically,
e use the difference between the 25th and 75th percentiles as the
idth of the predictive intervals:

= 𝑘75 − 𝑘25 (11)
𝑑,𝑡 𝑑,𝑡 𝑑,𝑡
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Table 1
Summary of numerical classifiers. Note that the variable in a parenthesis indicates that
the classifier is a function of that variable, e.g., the 𝑘 in classifier 1 to 3 indicates that
they are functions of the clear-sky index.
𝑐 𝐱𝑐𝑑,ℎ 𝑐 𝐱𝑐𝑑,ℎ 𝑐 𝐱𝑐𝑑,ℎ 𝑐 𝐱𝑐𝑑,ℎ
1 𝜇𝑑,ℎ(𝑘) 4 𝜇𝑑,ℎ(𝑤) 7 𝜇𝑑,ℎ(𝑘𝑃𝑉 ) 10 𝜇𝑑,ℎ(𝑤𝑃𝑉 )
2 𝜎𝑑,ℎ(𝑘) 5 𝜎𝑑,ℎ(𝑤) 8 𝜎𝑑,ℎ(𝑘𝑃𝑉 ) 11 𝜎𝑑,ℎ(𝑤𝑃𝑉 )
3 𝑣𝑑,ℎ(𝑘) 6 𝑣𝑑,ℎ(𝑤) 9 𝑣𝑑,ℎ(𝑘𝑃𝑉 ) 12 𝑣𝑑,ℎ(𝑤𝑃𝑉 )

The clear-sky indices and their width are all instantaneous values
i.e., they only reflect the cloudiness levels at a certain time point –
hile FRP is given hourly. To measure the overall uncertainty level
ithin an hour, we introduce three operations: mean (𝜇𝑑,ℎ(⋅)), standard

variation (𝜎𝑑,ℎ(⋅)), and variability (𝑣𝑑,ℎ(⋅)). Taking clear-sky index for
example, the hourly mean measure the overall cloudiness level and is
given by:

𝜇𝑑,ℎ(𝑘) =
1
4

3
∑

𝑖=0
𝑘50𝑑,4ℎ−𝑖 (12)

he standard deviation and variability both measure the cloud-induced
luctuations during a time period, where greater fluctuations usually
ead to higher forecast errors [50]:

𝑑,ℎ(𝑘) =

√

√

√

√
1
3

3
∑

𝑖=0

[

𝑘50𝑑,4ℎ−𝑖 − 𝜇𝑑,ℎ(𝑘)
]2

(13)

𝑣𝑑,ℎ(𝑘) =

√

√

√

√
1
4

3
∑

𝑖=0

[

𝑘50𝑑,4ℎ−𝑖 − 𝑘50𝑑,4ℎ−𝑖−1
]2

(14)

By obtaining the hourly mean, standard deviation, and variability
of clear-sky index and the size of predictive interval, we have de-
fined 6 numerical classifiers based on the probabilistic solar irradiance
forecasts (𝑐 = 1 to 6), as listed in Table 1.

Another indicator of local cloudiness level is the clear-sky power
index, which is the ratio of solar power forecasts over solar power
productions under clear-sky conditions. The term reflects cloudiness
levels from a solar power production perspective and has been used
in existing studies [51], and the width of clear-sky power index can
also be defined accordingly:

𝑘𝑃𝑉 ,𝛼
𝑑,𝑡 =

𝑝𝛼𝑑,𝑡
𝑝0𝑑,𝑡

, 𝑤𝑃𝑉 = 𝑘𝑃𝑉 ,75
𝑑,𝑡 − 𝑘𝑃𝑉 ,25

𝑑,𝑡 (15)

In this study, we convert solar irradiance to solar power by using PVLib,
an open-source simulation tool for solar PV systems [52]; therefore, we
can define another six classifiers based on 𝑘𝑃𝑉 ,𝛼

𝑑,𝑡 (𝑐 = 7 to 12), as listed
in Table 1.

3.2. Reduction of multi-dimensional classifiers

Because of the complexity of cloud movements, 1-dim classifiers
derived from a single site are usually insufficient to correctly charac-
terize the solar power uncertainty over the entire CAISO region, and
multi-dimensional classifiers based on multiple sites are more appro-
priate. Real-world system operators can use high-resolution raster fore-
casts to prepare multi-dimensional classifiers, however, solar irradiance
from locations within close proximity can be subject to strong spatial–
temporal correlations, and the increased dimension of kNN classifiers
can increase the computational intensity. Here, we use principal com-
ponents analysis (PCA) to reduce the dimension of multi-dimensional
classifiers.

PCA is a widely used unsupervised learning method for deriving a
low-dimensional set of features from a large set of variables. PCA de-
fines a linear transformation to map the raw data into a new coordinate
system such that the new coordinates are those along which the data
presents the greatest variance. In the kNN-based method, given an 𝑛-
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dim numerical classifier, the returned principal components represent
a set of linear combinations of the original 𝑛 dimensions, which are
ranked based on the amount of explained variance. Our analysis based
on single sites suggests that the first three principal components can
explain 70%–80% of the total variance of all twelve 1-dim classifiers
defined in Table 1.

We start PCA by normalizing the original classifier. Suppose 𝐲𝑐𝑑,ℎ
represents the normalized 𝐱𝑐𝑑,ℎ, and 𝐘𝑠

𝑑,ℎ = (𝐲1𝑑,ℎ,… , 𝐲𝐶𝑑,ℎ) ∈ R𝐶 repre-
sents a 𝐶-dim vector consisting of 𝐶 normalized 1-dim classifiers from
site 𝑠, 𝐘𝑑,ℎ = (𝐘1

𝑑,ℎ,… ,𝐘𝑆
𝑑,ℎ) ∈ R𝐶𝑆 includes all normalized 1-dim clas-

sifiers from 𝑆 sites. We use history data to derive the coefficient matrix,
or the loadings, 𝐓 ∈ R𝐶𝑆×𝐶𝑆 , and obtain the principal components
𝐙𝑑,ℎ = 𝐘𝑑,ℎ ⋅𝐓, where the 𝑖th component is 𝐳(𝑖)𝑑,ℎ. In our analysis, We use
the first three components as the reduced multi-site classifier, which are
then used to identify similar days and construct predictive distributions
of FRP.

3.3. FRP requirement evaluation metrics

Given that a shortage of ramping capacities can affect system relia-
bility, and because an oversupply could incur unnecessary production
costs, we evaluate the FRP requirements from two perspectives: system
reliability and market efficiency. Although typical metrics for system
reliability include the loss-of-load probability and expected energy not
supplied [36], these metrics might be inappropriate for evaluating
the FRP requirements because a lack of ramping capacities does not
necessarily cause the loss-of-load event [53]; hence, we follow [6]
to use the probability of FRP shortage to assess the adequacy of the
FRP requirements. In addition, market efficiency is usually measured
in terms of production costs given by market simulations; however,
without knowing detailed techno-economic characteristics of individ-
ual generators and bus-level demand in the real world, it is out of
our scope. For simplicity, we use the amount of system-level FRP
oversupply as our metric for market efficiency.

In summary, we adopt two metrics [29]: the frequency of FRP
shortage and the amount of FRP oversupply. Based on the definition
of FRP, the actual upward and downward requirements equal the
upward and downward net load forecast errors in each 15-min interval,
i.e., 𝜖𝑈𝑑,4ℎ−𝑖 and 𝜖𝐷𝑑,4ℎ−𝑖, 𝑖 = 0,… , 3; therefore, the differences between the
estimated FRP requirements and the actual needs are:

𝛿𝑈𝑑,4ℎ−𝑖 = 𝐹𝑅𝑃
𝑈
𝑑,ℎ − 𝜖𝑈𝑑,4ℎ−𝑖

𝛿𝐷𝑑,4ℎ−𝑖 = 𝐹𝑅𝑃
𝐷
𝑑,ℎ − 𝜖𝐷𝑑,4ℎ−𝑖

(16)

The frequencies of reserve shortages during hour ℎ in day 𝑑 are defined
as:

𝑝𝑈𝑑,ℎ = 1
4
∑3

𝑖=0 𝟏(𝛿
𝑈
𝑑,4ℎ−𝑖 < 0)

𝑝𝐷𝑑,ℎ = 1
4
∑3

𝑖=0 𝟏(𝛿
𝐷
𝑑,4ℎ−𝑖 > 0)

(17)

Note that although the frequency of the FRP shortage is calculated at
a 15-min resolution, the FRP requirements are defined on an hourly
basis [3]; therefore, the actual hourly FRP needs are given by the
following equations:

𝐹𝑅𝑃𝑈
𝑑,ℎ = max𝑖=0,…,3(𝜖𝑈𝑑,4ℎ−𝑖)

𝑅𝑃𝐷
𝑑,ℎ = min𝑖=0,…,3(𝜖𝐷𝑑,4ℎ−𝑖)

(18)

he oversupplies of up and down FRP during hour 𝑑, ℎ are:

𝑈
𝑑,ℎ =

|

|

|

|

max(0, 𝐹𝑅𝑃
𝑈
𝑑,ℎ − 𝐹𝑅𝑃𝑈

𝑑,ℎ)
|

|

|

|

𝐷
𝑑,ℎ =

|

|

|

|

min(0, 𝐹𝑅𝑃
𝐷
𝑑,ℎ − 𝐹𝑅𝑃𝐷

𝑑,ℎ)
|

|

|

|

(19)

To measure the performance during an extended period of time, we
define the following overall evaluation metrics during a given set of
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a

p

hours  = {(𝑑, ℎ)}:

𝑃𝑈
 = E𝑑,ℎ∈

[

𝑝𝑈𝑑,ℎ
]

𝑃𝐷
 = E𝑑,ℎ∈

[

𝑝𝐷𝑑,ℎ
]

𝑄𝑈
 =

∑

𝑑,ℎ∈ 𝑞𝑈𝑑,ℎ
𝑄𝐷

 =
∑

𝑑,ℎ∈ 𝑞𝐷𝑑,ℎ

(20)

where 𝑃 and 𝑄 denote the frequencies of shortages and total oversup-
plies over period , respectively.

3.4. Dynamic selection of kNN parameters

A key step in the kNN method is to select an appropriate classifier
(𝑐) and an appropriate number of closest neighbors (𝐾). Ideally, in
an hour (𝑑0, ℎ0), the optimal 𝑐 and 𝐾 should be selected such that
both the frequencies of reserve shortage (𝑝𝑈𝑑0 ,ℎ0 or 𝑝𝐷𝑑0 ,ℎ0 ) and reserve
oversupplies (𝑞𝑈𝑑0 ,ℎ0 or 𝑞𝐷𝑑0 ,ℎ0 ) are minimized. This forms the following

multi-objective optimization (taking upward FRP as an example):

min
𝑐,𝐾

(𝑝𝑈,𝑐,𝐾
𝑑0 ,ℎ0

, 𝑞𝑈,𝑐,𝐾
𝑑0 ,ℎ0

) s.t. 𝑐 ∈ , 𝐾 ∈ Z+ (21)

Because the FRP requirements must be made available to market partic-
ipants before (𝑑0, ℎ0), and because the forecast errors can only be known
fterwards, we use the metrics calculated using 𝑁 previous days as an

empirical approximation. The optimization becomes:

min
𝑐,𝐾

(𝑃𝑈,𝑐,𝐾
 , 𝑄𝑈,𝑐,𝐾

 ) s.t. 𝑐 ∈ , 𝐾 ∈ Z+ (22)

where  represents a validation set that includes hour ℎ from 𝑁
revious days:  = {(𝑑0 − 𝑖, ℎ0)|𝑖 = 1,… , 𝑁}. Because of the limited

search space in our study, it is possible to solve the multi-objective
optimization by an exhaustive search over all pairs of 𝑐 and 𝐾 and by
selecting the optimal solution which minimizes the objective of both
𝑃𝑈,𝑐,𝐾
 and 𝑄𝑈,𝑐,𝐾

 . Note that each hour could have a different set of
optimal 𝑐 and 𝐾, which are dynamically selected by the optimization
model; therefore, we propose a two-step kNN-based method to estimate
the FRP requirements of hour (𝑑0, ℎ0), as summarized in Fig. 3. In
Step 1, the kNN parameters (𝑐∗, 𝐾∗) are optimized based on historical
performance from a validation set consisting of 𝑁 previous days. In
Step 2, the optimal classifier 𝐱𝑐∗𝑑0 ,ℎ0 is calculated based on solar forecasts,
and the FRP requirements are estimated based on the 𝐾 most similar
historical days. Note that the method is applied in a rolling-forward
manner, where the validation set is updated everyday by adding the
latest day and dropping the earliest day. The dynamic construction of
a validation set is aimed to improve the performance of the kNN-based
method, as shown in Fig. 8, the dynamic case outperforms most other
cases with constant kNN parameters. Furthermore, a dynamic valida-
tion simulates how operators such as the CAISO commonly use similar
methods in practice (as detailed in Section 2.1), re-estimating parame-
ters and requirements daily, based on updated data sets (dropping the
oldest day and adding the newest day to the dataset).

3.5. Machine/deep-learning-based benchmarks

A collection of machine/deep-learning-based (ML/DL-based) bench-
marks are set to compare with the proposed kNN-based approach.
Different from the proposed approach, these ML/DL-based benchmarks
are modeled as supervised learning regression problems, which do not
follow the CAISO FRP implementation procedure. The general idea of
the FRP prediction is to fit a mapping between the deployed FRP and
the input at the training stage:

𝐹𝑅𝑃
𝑈
= �̂�𝑈 (𝐱,𝐖𝑈 )

𝐷 𝐷 𝐷
(23)
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𝐹𝑅𝑃 = �̂� (𝐱,𝐖 )
Fig. 3. Estimate FRP by dynamically selecting kNN parameters. We use upward FRP
to demonstrate the workflow and downward FRP follows similar process. Note that the
𝐱𝑐𝑑,ℎ can be any 1-dim classifier from Table 1 or PCA classifiers.

where 𝐱 is an input variable, 𝐖𝑈 and 𝐖𝑈 are trainable parame-
ters of ML/DL-based models, and �̂�𝑈 and �̂�𝐷 are the mapping re-
lationships between the input and the upward and downward FRP,
respectively. Note that the input 𝐱 can be any classifier used in the
kNN-based method. Table 2 lists the selected ML/DL-based benchmarks
for comparison, including one convolutional neural network (CNN),
three shallow neural networks (ANNs), three support vector regression
(SVR) models, three gradient boosting machine (GBM) models, and a
random forest (RF) model. Note that no recurrent neural networks,
e.g., long short-term memory (LSTM) and gated recurrent unit (GRU),
are included in the benchmark because of the discontinuous time series
used in this research, and because our preliminary analysis based on
LSTM and GRU fails to show improvements over other ML/DL-based
models. The hyperparameters/parameters are tuned by cross-validation
by splitting validation subsets from the training dataset.

CNNs were first developed for image classifications, but later were
introduced to deep regression problems. CNNs have been widely used
in the power and energy domain, such as forecasting [54], infrastruc-
ture detection [55], and individual behavior understanding [56]. The
1-dim CNN model consists of three layers: one convolutional layer
followed by two densely-connected layers. This architecture is deter-
mined by the cross-validation optimization. An example of the CNN
architecture optimization is shown in Fig. 4d. There are 32 filters with
a kernel size of 5 in the convolutional layer. The two densely-connected
layers contain 10 and 1 neurons. Adaptive moment estimation (Adam)
is used for training, and the learning rate is 0.01. The sigmoid function
is used in all layers.

Four shallow machine learning algorithms with different training
strategies, kernels, or distributions are also included as benchmarks.
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Fig. 4. Parameter/hyperparameter optimization examples. (a) An ANN optimization example using B2, where the number neurons in each layer is optimized. (b) A GBM optimization
example using B8. (c) A SVR optimization example using B7. (d) A CNN optimization example using B1. (e) An RF optimization example using B11. Note that nMAE denotes normalized
mean absolute error.
Table 2
Deep/machine learning benchmarks.

Algorithm Model Training algorithm and kernel function

CNN B1 Adaptive moment estimation

ANN
B2 Standard back-propagation
B3 Momentum-enhanced back-propagation
B4 Resilient back-propagation

SVR
B5 Linear kernel
B6 Polynomial kernel
B7 Radial basis function kernel

GBM
B8 Squared loss
B9 Laplace loss
B10 T-distribution loss

RF B11 Classification and regression tree (CART) aggregation

These models are also widely used in various regression problems in
power systems [57–59]. ANN models are trained with a learning rate
of 0.01. The momentum in B2 is set to be 0.9. The minimum and
maximum update rate in B3 are 1 × 10−6 and 50, respectively. Similar
to CNN, the hyperparameters of ANNs are also determined by the grid-
search optimization, which is illustrated by an example in Fig. 4a.
The number of layers and the number of neurons in each layer are
determined in the optimization process based on the validation dataset.
The kernel coefficient (gamma) and the regularization parameter (C)
in SVR models are the tuning parameters and their tuning process is
shown in Fig. 4c. In GBM models, the number of trees (n.trees), the
number of splits (interaction.depth), and the learning rate (shrinkage)
are the most important parameters. Their selection is shown in Fig. 4b.
The number of variables randomly sampled as candidates at each split
(mtry) in the RF model is tuned, as shown in Fig. 4e.
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4. Case studies and results

4.1. Test cases

The data used in our case studies are drawn from two sources:
We download the historical system-level net load forecast errors from
CAISO’s Open Access Same-time Information System, which publishes
real-time and historical data related to CAISO’s daily market opera-
tions; IBM’s Watt-Sun forecasting system provides 2HA probabilistic
solar irradiance forecasts for a selected number of sites [60]. Note
that IBM’s sites are located at places where ground observations are
available. Given that CAISO’s solar PV power plants are mainly con-
centrated in the Southern California region, we use the forecasts from
five sites (𝑠 = 1 to 5) in Southern California to characterize the weather
conditions. The forecasts are issued every 15 min and include the
5th, 25th, 50th, 75th, and 95th percentiles of mean GHI during each
15-minute interval. The forecasts have NaN values during nighttime,
therefore are removed. The forecasts and historical CAISO data span
from April 1, 2019 to December 31, 2020. We select three months from
2020 as our test sets: February, August, and October, which represent
winter, summer, and transitional season, respectively. Data from the
remaining 18 months is used to train and validate our models.

4.2. Trade-offs between reliability and oversupply

We first study the performance in terms of the frequency of FRP
shortage and oversupply as a function of classifiers (𝑐) and the number
of nearest neighbors (𝐾). Figs. 5 and 6 show the frequencies of FRP
shortage (𝑃𝑈,𝑐,𝐾

 , 𝑃𝐷,𝑐,𝐾
 ) and total oversupplies (𝑄𝑈,𝑐,𝐾

 , 𝑄𝐷,𝑐,𝐾
 ) in both

directions during 5 representative hours in February—i.e., ℎ is fixed,
and 𝑑 includes all days in February in . The 5 selected hours rep-
resent five different times of day: early morning (ℎ = 7), midmorning
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Fig. 5. Upward FRP oversupply and risk of shortage as a function of 𝑘 in February 2020 by time of day. Site 2 is used. Note that line types in the legend only represent classifiers,
and line colors indicate whether a line represents ‘‘risk of shortage’’ (left axis) or ‘‘oversupply’’ (right axis).
Fig. 6. Downward FRP oversupply and risk of shortage as a function of 𝑘 in February 2020 by time of day. Site 2 is used. Note that line types in the legend only represent
classifiers, and line colors indicate whether a line represents ‘‘risk of shortage’’ (left axis) or ‘‘oversupply’’ (right axis).
(ℎ = 10), noon (ℎ = 12), midafternoon (ℎ = 15), and late afternoon
(ℎ = 18). For brevity, we show only the results for the baseline and
three 1-dim classifiers (𝑐 = 1, 2, 3) because the other 1-dim classifiers
(𝑐 = 4 to 12) present similar trends. In many cases, the frequency
of the FRP shortage in both directions is reduced as 𝐾 increases for
hours between mid-morning and mid-afternoon; at those times, the
total oversupply slightly increases as 𝐾 increases. For example, the
total oversupply in the baseline during hour 10 increases from 10 GWh
to 20 GWh in the upward direction, and from 13 GWh to 23 GWh in
the downward direction, as 𝐾 increases from 5 to 60. Meanwhile, the
frequency of the FRP shortage decreases from 10% to less than 5% in
both directions because of greater coverage. Similar trends can also be
found in the three kNN-based cases by using 1-dim classifiers.
8
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A comparison between the baseline and the kNN cases indicates
that the kNN-based method can reduce the total oversupply without
significantly compromising the reliability level. For example, by using
𝜇(𝑘) as a classifier (𝑐 = 1) and 𝐾 = 30, the total oversupply of the
upward FRP at hour 10 is brought down to 15 GWh compared to
20 GWh in the baseline, whereas the frequency of the FRP shortage
remains the same. In addition, the baseline presents greater risks of FRP
shortage in both directions during early morning and late afternoon:
the frequencies are greater than 10% at hour 7 and 18. In contrast,
the frequencies of the upward FRP shortage are 10% and 7% when
using 𝑣(𝑘) and 𝜇(𝑘) as a classifier, respectively. This indicates that the
NN-based method can significantly improve the reliability level.
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Fig. 7. The frequency of the FRP shortage and the FRP oversupply as a function of 𝐾
in February 2020. One-dim classifiers (𝑐 = 1 to 12) from site 2 are used.

Next, we examine the overall performance in terms of reliability and
oversupply. As Fig. 7 shows, all 1-dim classifiers present similar trends
as 𝐾 increases, i.e., the FRP oversupply increases sharply when 𝐾 ≤ 20,
which in turn results in a considerable drop of the frequency of the
FRP shortage. When 𝐾 ≥ 20, however, both metrics remain relatively
constant. For example, when 𝜇(𝑘) is used as a classifier, the total FRP
oversupply increases to 320 GWh and the frequency of FRP shortage
decreases to 6% as 𝐾 increases to 20, and both stay constant thereafter.
This phenomenon suggests that a sufficient number of days (𝐾 ≥ 20)
are required to give a reliable estimation of FRP requirements across all
classifiers. Note that in the baseline, the frequency of the FRP shortage
increases slightly as 𝐾 increases from 20 to 60, implying that 20 days
could yield better performance than CAISO’s business-as-usual (BAU)
implementation, where 𝐾 = 30. In addition, similar to the previous
observation in Figs. 5 and 6, Fig. 7 also illustrates the trade-off between
reliability and oversupply: using 𝜇(𝑘) as a classifier leads to high FRP
oversupplies across the whole 𝐾 range; however, the conservative FRP
requirements result in the lowest frequencies of FRP shortage.

Fig. 8 shows the trade-off between reliability and oversupply in the
form of Pareto frontiers. The point at the intersection of two dashed
lines represents CAISO’s BAU implementation. The two dashed lines
divide the plane into four quadrants (I, II, III, and IV), where points
in Quadrant III indicate an improvement in both dimensions, points
in Quadrant I indicate a degradation in both metrics, and Quadrants
II and IV represent noninferior solutions, i.e., an improvement in one
objective requires a degradation of the other. In Fig. 8, a significant
percentage of kNN points fall into Quadrant III and no point falls within
Quadrant I, suggesting that the kNN-based method can result in more
economic and reliable solutions than the baseline.

4.3. Dynamic selection of kNN parameters

Until now, we have demonstrated that the kNN-based method can
potentially improve the estimates of FRP requirements; however, it
could also lead to the deterioration of reliability or oversupply when an
inappropriate classifier or number of days is selected. In addition, the
performance of classifiers can vary significantly with the time of day.
As shown in Figs. 5a, 5e, 6a, and 6e, 𝜇(𝑘) yields the highest reliability
levels during early morning and late afternoon in both directions;
whereas Figs. 5c and 6c suggest that 𝜎(𝑘) outperforms 𝜇(𝑘) during
noon in terms of reliability. The inconsistent performance presented
by Figs. 5 and 6 implies the challenges associated with the selection
of an appropriate classifier, which motivates the dynamic selection of
the optimal kNN parameters.
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Fig. 8. Trade-offs between reliability and oversupply in February 2020. One-dim
classifiers from Site 2 are used.

Fig. 8 shows the results when the kNN parameters are dynamically
selected from all 1-dim classifiers. We observe a similar trade-off be-
tween reliability and oversupply when the size of the validation set
(𝑁) changes. In addition, Fig. 8 shows that the results are significantly
improved when the kNN parameters are dynamically selected. For
example, when 𝑁 = 20, the frequency of the FRP shortage is reduced
to 6%, less than any other runs with similar total oversupplies. Another
way to view the improvements resulting from the proposed method is
to consider the reduction in the value on one axis in Fig. 8, holding the
other axis at its baseline value. For example, holding the oversupply at
322 GWh (CAISO’s BAU value), the dynamic selection method brings
the probability of FRP shortage down to 6%. Similarly, Table 3 shows
that when the risk is held constant at 8%, the oversupply is reduced to
272 GWh from 322 GWh in CAISO’s BAU case, a 16% reduction.

Fig. 9 shows the optimized Pareto frontiers of all 1-site cases and
the multi-site case using PCA-kNN from February, August, and October
2020. All optimal Pareto frontiers present similar trends as in Fig. 8
when 𝑁 varies. Although most 1-site cases present better performance
than the baseline, their performance varies because of geographic
differences. The variation of performance across sites implies the chal-
lenge of using one single site to characterize the weather condition of
the whole CAISO region. By contrast, the optimized PCA-kNN frontier
accounts for the weather conditions from all 5 sites, and results in
less variation of performance. The optimized PCA-kNN frontier presents
better performance in terms of both dimensions compared to the base-
line and all 1-site cases in February and August. As Table 3 suggests,
when the risk of FRP shortage is held at 8%, the PCA-kNN case
brings down the oversupply in February to 242 GWh, a 25% reduction
compared to CAISO’s BAU case.

To compare the results from the kNN-based methods with other
data-driven methods, the evaluation metrics from the benchmark ML/
DL-based models are calculated and shown in Fig. 9d-f. Note that these
models do not require the use of historical data to construct predictive
distributions of FRP, therefore are not affected by the number of
neighbors 𝐾. As displayed in Fig. 9d-f, the black dots that represent
the original benchmark methods are all concentrated in Quadrant IV,
indicating reduced oversupplies yet lower reliability levels. For exam-
ple, the minimum FRP oversupply from February given by the PCA-kNN
case is 220 GWh (the points at the bottom as shown in Fig. 9a), which
is still significantly greater than the maximum oversupply from the
ML/DL benchmarks, 106 GWh; however, the smallest frequency of FRP
shortage in the benchmarks is 22.8%, which is greater than not only all
kNN-based methods but also the baseline.
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Fig. 9. (a)–(c) Pareto frontiers of all 1-site cases and the multi-site PCA-kNN case. (d)–(f) Frontiers from the ML/DL-based methods. The black dots represent the original results
from ML/DL-based benchmarks – i.e., 𝛽 = 1 – and the gray curves represent the Pareto frontiers when the factor 𝛽 ranges from 1 to 3.
The significantly greater chances of FRP shortage of the bench-
ark methods result in an unfair comparison, therefore, to make a

omparison based on a more level playing field, we adjust the FRP
equirements from the benchmark methods by multiplying them with
factor 𝛽, where 𝛽 = 1 indicates the original results. Owing to the

rade-off between the oversupply and the chance of FRP shortage, a
reater 𝛽 results in more conservative FRP requirements, i.e., more
RP oversupplies and lower probabilities of FRP shortage. As Fig. 9d
hows, the profiles of the adjusted benchmark results resemble the
revious kNN profiles. Although several curves fall into Quadrant I,
considerable fraction of the adjusted benchmark results fall into

uadrant III, indicating potential improvement in both dimensions.
articularly, Table 3 indicates that when the reliability level is held
onstant at CAISO’s BAU level, the oversupplies from the best adjusted
enchmark results are even lower than the optimized PCA-kNN method
n February and October.

We also evaluate our results by calculating mean absolute error
MAE), a commonly used evaluation metric as defined below:

AE = 1
||

⋅
∑

(𝑑,ℎ)∈

|

|

|

|

𝐹𝑅𝑃
𝐷
𝑑,ℎ − 𝐹𝑅𝑃𝐷

𝑑,ℎ
|

|

|

|

(24)

here set  represents an evaluation period and is one month in our
tudy. Note that (24) only gives the definition of MAE of downward
RP and the MAE of upward FRP is in similar form. Table 4 shows MAE
f all cases. It shows that although single-site kNN at times results in
reater MAE values than the baseline, the adoption of PCA appreciably
educes the MAE values and result in better performance. In addition,
lthough the ML/DL method results in the lowest MAE values, as shown
n Fig. 9, it also leads to greater chances of FRP shortage. The fact
hat MAE fails to take into account system reliability is a limitation,
nd highlights the importance of considering both oversupply and
eliability in the decision-making process.

. Conclusion

This paper proposed a data-driven method to improve the estima-
ion of the FRP requirements by using probabilistic solar forecasts.
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e developed a variety of numerical classifiers as labels of weather
Table 3
Comparison of oversupplies when the probabilities of FRP shortage are fixed at CAISO’s
BAU levels.

February August October

Probability of FRP shortage, CAISO BAU 0.078 0.080 0.026
Oversupply, CAISO BAU 322 390 445
Oversupply, PCA kNN 242 379 392
Oversupply, best adjusted ML/DL 226 445 387
Oversupply, best single-site 272 395 415
Number of the best single-site 2 4 5

Note: Oversupplies are in GWh.

Table 4
MAE of the studied cases. Note that the baseline and single-site MAE values are mean
over all 𝐾 values, PCA-kNN values are mean over all 𝑁 values, and ML/DL is the
mean over all included methods.

Baseline
(MW)

Single-site
kNN (MW)

PCA-kNN
(MW)

ML/DL
(MW)

FRP, downward, February 2020 358 364 296 223
FRP, upward, February 2020 393 433 315 225
FRP, downward, August 2020 247 342 278 165
FRP, upward, August 2020 453 443 405 346
FRP, downward, October 2020 389 420 291 199
FRP, upward, October 2020 598 763 460 219

conditions based on the predicted uncertainty, variability, and cloudi-
ness index of solar irradiance and power. In addition, we adopted PCA
to reduce the dimension of multi-dimensional classifiers, which better
reflects system-level uncertainties by including classifiers from multi-
ple sites across CAISO. We applied a kNN-based method to identify
historical days of similar weather condition and used the realized FRP
requirements from these days to construct predictive distributions of
the FRP needs, which can be used to give weather-informed estimations
of FRP requirements.

By applying the proposed method to the CAISO 15-min RT market,
our results from three representative months in 2020 suggest that
the proposed method can improve the performance compared to the
baseline in terms of both system reliability and oversupplies. Because
of the performance sensitivity to the kNN parameters, the paper also
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proposed a selection method to dynamically identify the best kNN
parameters per hour of the day, which allows power system operators
to maximize the benefits of the kNN-based method. Key insights from
our results include:

1. The performance of the kNN-based method varies across clas-
sifiers and the kNN parameters. Generally, a greater 𝐾 results
in more conservative estimations, i.e., greater FRP requirements
and increased reliability levels.

2. Despite variations in performance, the weather-informed deci-
sions perform better in terms of reliability and market efficiency
most of the time, especially during early morning and late
afternoon, when sunrise and sunset cause greater net load un-
certainties. As Fig. 9a shows, by using multi-site classifiers, the
PCA-kNN method can reduce FRP oversupply by up to 25%
without increasing the risk of reserve shortage.

3. Although different classifiers from a single site explain weather
uncertainty from different perspectives, they also present con-
siderable correlations. In addition, a comparison of results using
forecasts from different sites suggests that geographical varia-
tions can affect performance. In response, the PCA-based method
effectively characterizes the system-level weather uncertainty by
using only a reduced set of principal components, and results in
improved performance when compared with all single-site cases.
In our case, using 3 principal components can explain 70%–80%
of total variance, and as shown in Fig. 9a, using PCA classifiers
results in an additional 11% of reduction in total FRP oversupply
compared with the best single-site classifier. The proposed ap-
proach is extensible to include more sites (e.g., the entire CAISO
region) to further improve the performance, therefore promises
greater benefits in real world.

4. Different from the kNN-based method that is bounded by similar
days, the ML/DL-based methods learn to estimate reserves with
greater variations. Moreover, as shown in Fig. 9, the ML/DL-
based methods tend to underestimate FRP requirements, which
further result in increased frequencies of FRP shortages. This is
because FRP requirements are subject to a lower bound of 0 MW
but no upper bound, and because the ML/DL-based methods put
the same weights on FRP shortages and oversupplies, underesti-
mating FRP requirements result in smaller prediction errors. This
implies that a better objective function is required in the ML/DL-
based methods to take into account trade-offs between reliability
and economics in real world. In addition, it is interesting to train
different ML/DL models for different weather classifications with
more years of data.

5. Although the ML/DL-based benchmarks can potentially reduce
the oversupply of FRP, our methods present better performance
in terms of reliability levels. In addition, Table 3 indicates that
our optimized PCA-kNN results outperform the best adjusted
benchmark results in August, indicating superior and robust per-
formance. In the other two months, the best adjusted benchmark
results show lower FRP oversupplies, however, Fig. 9 shows that
a significant percentage of adjusted benchmarks also result in
greater FRP oversupplies that CAISO’s BAU results, indicating
great variation of performance. By contrast, our optimized PCA-
kNN results present better performance than CAISO’s BAU across
all months.

The kNN-based method represents a generic approach to providing
eather-informed ramping requirements in power market scheduling
nd operations, which can also be extended to determine the require-
ents of other forms of ancillary services in electricity markets. As
entioned, the method is also extensible to include other components

f net load probabilistic forecasts. One limitation of our analysis is that
e assume perfect foresight in load and wind power to focus on solar
ower, therefore, future studies should include additional uncertainties
ssociated with load and wind power to better reflect real-world rules.
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In future work, we will also explore quantifying the economic and
reliability benefits using look-ahead market clearing runs, i.e., using
UC and ED models. Currently, the selection of kNN parameters is
formulated as a multi-objective optimization model that considers reli-
ability and economic separately, as shown in (21). In a multi-objective
problem like this, a single solution can be chosen if the user can
select weights reflecting the relative priority of the two objectives. Such
weights would be user and situation dependent, and would best be
selected after studying the trade-offs embodied in the set of efficient
(Pareto) alternatives. In addition, a critical caveat in our analysis is
that the solar power output is converted from solar irradiance by using
simulation tools, which may not reflect the actual irradiance-to-power
conversion because of imperfect knowledge of technical parameters of
real-world solar power plants, such as inverter capacities, PV panel ca-
pacities, and degradation rates. Future work can calibrate the simulated
result by comparing it with real-world data or conducting sensitivity
analyses to address parametric uncertainties. Comparative studies can
also be conducted to demonstrate the impact on the model performance
by using simulated PV power as classifiers.
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