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Solar photovoltaic systems largely integrated within the distribution grid are operated ‘behind-the-meter’
and power generation cannot be directly monitored by most utilities. The increasing penetration of behind-
the-meter solar photovoltaic systems can deter efficient network and market operations due to variability
and uncertainty in net load, which is exacerbated by limited visibility and the difficulty in analyzing the
hosting capacity. Risk introduced by behind-the-meter solar contributions may hinder reliable and secure grid
operations due to biased system monitoring and forecasts. Accurate behind-the-meter estimations, together
with capacity and specification forecasts, thus play a key role in balancing supply and demand and this article
reviews the pertinent literature, identifying key characteristics and predictive methods for efficient behind-the-
meter solar photovoltaic generation. Forecasting is central to methods herein. The fundamental characteristics
of behind-the-meter solar forecasting, including which methods are applicable for scenario-driven use cases,
are driven by the metrics most useful for system-wide performance evaluation. To this aim, the literature is
reviewed with a focus on forecasting applications for aggregate, regional behind-the-meter generation useful
to bulk system and utility operations. As distinguished from net load forecasting, subtleties in these coincident
tasks are explored before concluding with recommendations for current practice and future implementations.

1. Introduction

The global electricity generation capacity of installed photovoltaic
(PV) solar power has expanded rapidly over the past decade and ex-
ceeded 635 GW at the end of 2019 [1]. Current estimates indicate that
the total installed capacity will increase six-fold over 2018 levels by
2030 and reach > 8000 GW by 2050 [2]. According to the International
Energy Agency (IEA), half of the growth in solar energy capacity
globally will be small-scale, distributed generations connected to the
electric distribution system, as opposed to large, centralized plants
feeding into the transmission system [3]. Most of these residential,
commercial, and/or rooftop PV systems are installed behind-the-meter
(BTM), mainly due to lower consumer costs, state-mandated renewable
policies, trends towards a decentralized grid, and the need for innova-
tive business models such as third-party ownership [4]. The increase in
on-site energy generation due to the large number of installed BTM PV
systems has caused changes in the operation and planning of power
systems, and load forecasting in particular during critical times of
the day. In the presence of BTM PV systems, observing their activity
separate from loads can be difficult because most of the time only the
accumulated net load reading is available to the utility.! However, in
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large quantities, BTM PV systems can significantly alter the shape of
regional net load profiles and pose balancing and reliability challenges.

In geographies like Australia, Germany, Hawaii or California, fast
growth rates of residential solar PV adoptions are accelerating the need
for BTM visibility and forecastability. In Australia, BTM solar system
had an 8.03 GW total capacity with 2.06 million PV installations in
2019 [5]. With such a high penetration, the quality of load forecasts can
be degraded, impeding reliable and efficient network operations [6].
In Hawaii, 21% of single-family homes have rooftop solar and mid-day
loads show significant down-ramping at peak PV generation and up-
ramping with its diminished performance near the latter portions of the
diurnal cycle; regional net load concerns necessitate further examina-
tion of the phenomena [7]. Fig. 1 depicts (a) the progression of the net
load profile with additional PV generation in power system operations,
the so-called “duck curve” with the belly of the curve growing with
increasing levels of BTM solar penetration, and (b) the risk introduced
with shoulder period ramping can be more accurately anticipated with
probabilistic rather than point forecasts. With increasing amounts of
BTM solar throughout the world, the capability to forecast, estimate,
and control BTM PV systems is becoming important to smart grid
operations [8].

1 Net load here is defined as the customer’s energy consumption minus its solar generation.
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Fig. 1. (a) net load profiles with increasing penetration of BTM PV generation, adapted from [8]; (b) illustrative comparison of a point forecast and a probabilistic interval forecast
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The system operators’ visibility and forecastability of BTM PV sys-
tem performance is currently latent to load expectations, owing to
sparse PV penetration in many regions, and cannot be easily un-
covered from existing measurements [9]. Explicit prediction of BTM
PV system performance will enable reference signaling for both en-
hanced grid control and superior load-side dispatchability in conjunc-
tion with human-driven activities and demands. As with utility-scale
PV systems, BTM PV is a variable and uncertain weather-dependent re-
source. However, the uncertainty in anticipating power generation from
BTM systems is compounded by systemic missing data or information;
e.g., lack of records or knowledge concerning installed BTM PV systems
interferes with accurate time-series performance forecasting, making
advanced energy management for load shaping and modulation (or
optimal demand response) currently untenable at scale. Unlike utility-
scale PV plants, specifications on residential PV systems are largely
absent for commercial forecasters and system operators alike — or key
data is often only partially known [10,11]. In an effort to minimize
risks, utilities typically require permits and enforce interconnection
requirements for installing BTM solar generation [12]. Nonetheless, the
number of unregistered or unknown BTM PV systems is significant for
a variety of reasons, including installations made prior to regulations
being enacted, lack of awareness about the rules, owners avoiding per-
mitting fees, and discrepancies between the reported and the installed
configurations [13]. As the inadequate and biased information on the
capacity and specification of BTM PV systems undermine the reliable
operation of power systems, it is an essential step to include capacity
estimation methods in the context of BTM PV generation forecasts.

While the literature on estimating the output of individual PV units
is rich, the literature concerning aggregated output of a large fleet of
unobserved BTM PV forecasting is limited. The fact that the actual
production values are unknown to the entity conducting the forecasting
is the main issue for forecasting the aggregated output of BTM PV
installations. While individual units are metered by local power util-
ities, the collected data is often stored within the distribution company
domain and used for settlement purposes. There is no infrastructure
available to monitor and link the accumulated PV production values to
transmission-level energy management systems in real time. [14].

Some researchers focus only on the prediction of solar irradiance,
considering the fact that accurate irradiance forecasting is a prerequi-
site to accurate forecasting of the PV system’s power output. Review of
statistical approaches and techniques based on cloud images and nu-
merical weather prediction models used for irradiance forecasting can
be found in [15]. A detailed overview of irradiation forecasting using
machine learning approaches is provided in [16] and a comparison and
evaluation of several machine learning techniques for predicting the
daily global solar radiation can be found in [17]. A more recent review
on irradiance forecasting can be found in [18] where a large number
of publications on the topic are reviewed with a text mining approach.

., 90% central intervals. The 50th percentile of a probabilistic forecast can also interpreted as a point forecast.

Forecasting output of PV power from individual systems are also
considered in several reviews. For example, statistical and physical
methods used to forecast solar irradiance and output PV power are
reviewed in [19-21]. A comprehensive recent review on solar PV
power forecasting techniques using time-series statistical, physical, and
ensemble methods is provided in [22] including analysis of metrics
assessment. Some review papers only focus on a certain forecasting
methodology, such as ensemble models [23] and artificial intelligence
(AI) [24], and probabilistic solar forecasting [25].

A 2014 review considered both generation and load forecasting
describing net load forecasting at the scale of a single building, which
included a PV component as part a commercial building’s net load [26].
In a more recent review, literature on probabilistic solar power and load
forecasting methods are reviewed separately, to map the opportunities
for probabilistic net load forecasting [27]. However the study includes
the papers published before 2017 and does not focus on the addi-
tional modeling efforts necessary for producing BTM solar generation
forecasts.

The available literature revealed that particular attention to fore-
casting techniques for BTM PV output generation field is still lim-
ited and an updated literature review summarizing previous studies
is required. Therefore this article reviews recent work addressing the
added complexity of forecasting PV located behind the meter. The
contribution of this paper can be summarized as follows.

Different from the existing review literature on solar power forecast-
ing, this paper focuses on forecasting efforts required for invisible PV
generation. While building- and neighborhood-scale BTM forecasting
methods are also introduced, this review emphasizes methods for ag-
gregate regional BTM forecasting that are most useful to power system
operators. This includes methods to identify under-reported BTM PV
systems and estimate their capacity and specifications — steps unnec-
essary for utility-scale PV forecasting but crucial to fill gaps in BTM
registration data. Additionally, it differs significantly from previous
reviews as the main objective is to provide a better understanding of
the data flows for BTM forecasting, considering different users and use
cases, and to discuss the methods used for each particular case, with
a particular focus on regionally aggregated forecasts for power system
operators. Finally, recent papers on net load forecasting which is an
important application of BTM forecasting have also been reviewed. The
rest of the manuscript is organized as follows: Section 2 presents fun-
damentals of BTM solar forecasting, including different forecast users
and applications, spatiotemporal scales, and point versus probabilistic
formats. Section 3 details capacity and specification estimation for BTM
PV. Section 4 reviews current implementations of BTM PV forecasting
methods in the literature. Section 5 considers existing applications
in net load forecasting. Finally, conclusions and recommendations on
research directions are discussed in Section 6.
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Fig. 2. Example approaches to BTM solar PV forecasting for different users and use cases.

2. Fundamentals of behind-the-meter solar forecasting

A variety of forecasting methods are suitable for PV power fore-
casting, in general, and BTM solar forecasting in particular. To select
the best method for a given application, these methods can be grouped
across multiple axes, such as their users and use cases, temporal and
spatial resolutions, input data requirements, and approach to uncer-
tainty quantification. This section introduces these fundamental char-
acteristics that can be used to distinguish among methods, beginning
with the needs of the users these forecasts are ultimately intended to
serve.

2.1. Users and use cases

BTM solar forecasting has applications offering value to various
entities in the power grid, including consumers, distributed energy
resource (DER) aggregators, and distribution and transmission system
operators. Fig. 2 illustrates example forecasting approaches based on
these different use cases and the likely information available to the
forecaster.

Customer-scale forecasts may be used for combined BTM PV and
storage operations, whether for uninterruptible power or peer-to-peer
trading applications [28,29]. At the distribution scale, forecasts of
site-level BTM PV can be used for virtual power plant (VPP) bid-
ding and operation and for operational forecasting of demand within
a distribution service area [30,31]. For transmission system opera-
tors, longer-term predictions, used in transmission system operations
compared to the forecasts used in energy storage operations and dis-
tribution system operations, may be used for utility net load forecasts
utilized in the unit commitment and economic dispatch processes [9,
32,33]. At both the distribution and transmission scales, BTM PV power
forecasting requires additional considerations regarding installed ca-
pacity and specification estimation of the PV deployments [11]. The
data related to each PV system, such as system location and orienta-
tion, manufacturer specifications, and capacity information is generally
required to convert irradiance forecasts into power output by a PV
system model. Once the desired forecasting application is identified,
the necessary spatial and temporal resolutions, discussed in the next
subsection, are more easily determined.

2.2. Spatial resolution

BTM forecasting approaches can be grouped into three spatial res-
olutions directly corresponding to the three user types (Fig. 2): the
individual building level, the neighborhood level - representing a dis-
tribution feeder or campus, and the regional level - for balancing areas.
On the one end of the spectrum, forecasting for an individual customer
is relatively straightforward. The user knows system specification data
and might have access to their own historical observations. Forecasts
can be generated by any of a variety of machine learning or time-series
methods proposed in the literature for forecasting PV output for point
locations (e.g., utility-scale PV plants). For instance, the prediction of
a 1 MW PV plant power production with support vector machines
using several numerically predicted weather variables is presented
in [34]. A similar approach is proposed for a grid-connected PV plant
in [35], by using numerical weather prediction models combined with
an artificial neural network-based model. A non-parametric PV model
considering forecasts of meteorological variables and actual AC power
measurements of PV plants is proposed in [36]. Uncertainty associated
with the forecast of PV generation is analyzed in [37], for a solar house
equipped with demand-side management techniques and a local storage
system.

As a result, this category has been well covered in the recent review
literature, and is thus not the primary focus herein. On the other end
of the spectrum, forecasting methods for regionally aggregated BTM
PV generation can be categorized into bottom-up and top-down ap-
proaches, selected based on the availability of the requisite PV system
data [38].

Bottom-up forecasting is suitable when the data of all the individual
installations are known, including their location, capacity, tilt, az-
imuth, etc. Well-defined physical models combined with irradiance and
weather data can be used to directly predict the production at each PV
installation and sum those over the region of interest [39]. For example,
the California Independent System Operator collected all the data from
all the PV systems in the state of California and then combined it
with high-resolution irradiance values and weather forecasts to predict
the total contribution of BTM solar systems in its grid [40]. Such a
“bottom-up” approach is well suited for aggregating forecasts of utility-
scale PV plants, and for understanding the localized impacts in regional
analysis. This approach has the advantage of explicitly capturing each
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system’s specifics, but it is more challenging for BTM forecasting where
PV installation system data is often patchy.

When the goal is to estimate aggregated PV production or net load
across a large region and/or when detailed data is not available, top-
down BTM forecasting approaches may be more suitable. Top-down
approach is based on combinations of the partially known data; e.g., if
data from selected representative PV systems can be obtained, it can be
used to estimate the total generation of the region [11]. This approach
requires proper selection of the subset of systems and comparisons to
metered data on a statistically significant number of sites for bench-
marking purposes. In [41], upscaling from a representative set of PV
systems is proposed to provide regional PV point forecasts by analyzing
the orientation and module types of systems in Germany. The problem
of poor representation of the region is considered in [42,43] by feeding
a PV model with data from a larger sample of PV systems. Fuzzy
confidence intervals are used in [14] for uncertainties in the input data
with the advantage of collecting data from a few locations in the region
rather than keep tracking of all of them.

If no data is available for any of the systems but aggregated re-
gional production data is available, then regional output generation can
be predicted directly using statistical models, such as auto-regressive
moving average (ARMA) models [44,45], generalized auto-regressive
integrated moving average (ARIMA) models [46] and Gaussian Con-
ditional Random Fields (GCRF) models [47]. In the final case, when
no data is available either for individual PV systems or for the region,
irradiance forecasts can be transformed to power based on estimated
installed capacity [48]”.

Estimating the capacity and specifications of installed BTM PV
systems is an active research area. When data is sufficiently known,
regionally aggregated forecasts tend to benefit from lower forecasting
errors due to spatial averaging and smoothing effects [49-51]. To esti-
mate specifications, a likely first approach is to analyze public metadata
to assess data quality and identify major trends, such the average
capacity, tilt, and orientation of rooftop systems and the growth in
installed capacity over time. Additional approaches include analysis
of satellite aerial imagery and disaggregation of advanced measuring
infrastructure (AMI) data, which are detailed in Section 3. At interme-
diate scales, VPP and distribution system operators might borrow from
both the single-site and regionally aggregate approaches. VPP operators
for instance might have access to private system data, allowing the use
of bottom-up approaches less suitable for system operators. However,
this review focuses primarily on the transmission scale in Fig. 2 and
the methods particular to BTM forecasting at that resolution, including
capacity and specification estimation and regional net load forecasting.

2.3. Temporal characteristics

PV system power output is highly dependent on weather and atmo-
spheric conditions, especially the global horizontal irradiance (GHI),
which has predictable daily and seasonal variations but also depends on
changing local cloud cover. Different forecasting methods have varying
strengths in anticipating these changes over the next few minutes,
hours, or days. Two key parameters that describe the temporal specifi-
cations of a forecast are its resolution and horizon. Resolution describes
the period between two forecast valid times (e.g., hourly or 5 minute
resolution), and horizon describes the total duration of a sequence of
forecasts (e.g., a sequence of 5 minute resolution forecasts over the
next 1 h horizon). Forecasts can be broadly described by categorizing
the horizon into very short-term (minutes to 6 h ahead, possibly with
intra-hourly resolution), short-term (intra-day to day-ahead forecasts,
typically with hourly resolution), and long-term (seasonal horizon with
daily, monthly, or quarterly resolution). Typically increasing forecast-
ing horizon will have negative impact on accuracy metrics, particularly
for models solely depend on historical data [52]. The use case of the
forecast will likely dictate its horizon and resolution requirements,
and thus which methods are most suitable [53]. For instance, very
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short-term forecasts are highly beneficial for power smoothing and
real-time power dispatching. At minutes-ahead timescales, climatic
parameters are almost identical to the previous time steps, and BTM PV
is most sensitive to rapid changes in cloud cover. Short-term forecasts
are popular in load balancing, power plant management, and power
system operations decisions [22]. Long-term forecasting is effective for
maintenance scheduling of utility-scale plants and utility planning. Dis-
tribution and transmission system operators most often use short and
medium forecasting but may also use long-term horizons for planning
system operations and maintenance [54].

At the time scales suitable for power system operations, it is com-
mon to use solar irradiance forecasts based on numerical weather pre-
diction (NWP) models that simulate upcoming atmospheric conditions
as the foundation of the forecast. NWP models are computationally
intensive simulations that require several hours to solve physics-based
equations of atmospheric processes on a grid over the Earth’s atmo-
sphere. These models are typically provided by national and interna-
tional weather agencies, such as the National Oceanic and Atmospheric
Administration (NOAA) and the European Centre for Medium-Range
Weather Forecasts (ECMWF) [55,56]. NOAA and ECMWF both provide
a selection of NWP models at various spatial and temporal resolu-
tions, with spatial grids of 3-28 km, temporal resolutions of 1-3 h,
and forecasting horizons of a few hours to 16 days. NWP models
typically perform well for time horizons more than 4 h [19], though
recently developed models have shorter timescales, such as NOAA’s
High Resolution Rapid Refresh which has 15 minute resolution and
is updated hourly [57]. From the coarse grid-scale forecast, statistical
post-processing can be applied to correct for finer-scale topography and
generate a forecast for a specific location [58]. For the purposes of
BTM solar power forecasting, irradiance forecasts from a method such
as NWP can be assumed to be available. While weather forecasting in
general and irradiance forecasting in particular are not the focus of this
review, additional information can be found in [15,17,16].

2.4. Input data used in BTM forecast entities

Power forecasting methods best suited to their users’ needs will
vary based on the input data available, such as system specifica-
tions, weather forecasts, and historical observations. A building owner/
operator, for example, could generate a forecast for their own use
will have most necessary details about the installed PV system. A
power system operator generating a forecast of the aggregate BTM
PV generation in their service territory might need to estimate system
specifications and apply a time-series method appropriate for a wide-
area forecasts, rather than point locations. The approach taken might
be a single step that directly produces a power forecast, or it might
require multiple steps with different sources of input data and pre-
processing to impute missing data. Similar to utility-scale PV system
forecasting, data-driven models (statistical models and machine learn-
ing algorithms), or physical models, can be used in BTM solar power
forecasting. The statistical approach relies primarily on historical data
to “train” models, with limited reliance on NWP and PV system mod-
els [59]. In statistical models, the starting point is a training data set
that contains historical PV power, as well as various inputs or potential
inputs involving meteorological data and PV asset specifications. This
data set is used to train models — such as classical statistical models
or artificial intelligence models — that output a forecast of PV power
at a given time. In contrast, physical models do not use historical data
but rather solar irradiance forecasts and PV system data to generate
PV output forecasts. An example of a minimal set of PV system spec-
ification data is listed in Table 1 for the PVWatts calculator, which
estimates the energy production and cost of energy of grid-connected
PV systems [60]. A number of parameters are applicable to both utility-
scale and BTM installations, though, for example, fixed installations
are much more prevalent than tracking systems for residential and
commercial rooftop installations.
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Table 1
PV system specification parameters, [60].

Field Units

kw (DC)
Standard, premium, thin film

System size
Module type

System losses %

Array type Fixed open rack, Fixed roof mount,
1-Axis, Backtracked 1-Axis, 2-Axis

Tilt angle Degrees

DC/AC ratio Ratio

Azimuth angle Degrees

Inverter efficiency %

Ground coverage ratio (1-axis only) Fraction

BTM PV forecasts can rely on solar irradiance forecasts when the
information and measurements related with the system are missing.
Solar irradiance forecasts are generated by an NWP model that uses
meteorological data combined with calculated solar zenith and azimuth
angle data. Solar irradiance shows a strong positive correlation with PV
power output [66]. Researchers have proposed several approaches to
estimate solar irradiance including: statistical models [48,67], artificial
neural networks [68-71], artificial intelligent techniques [72], cloud
tracking [73,74]1, sky imagers [75,74,76], NWP models [77,78] and
hybrid models [79-82]. These models use meteorological data such
as GHI, air temperature, cloud cover, humidity, air pressure, wind
pressure, etc., and physical parameters of solar position such as solar
zenith, azimuth angle, as the input. Sources of meteorological data can
include both empirical records and forecasts.

Although BTM solar data has low transparency and accessibility,
there are still some data sets that can be used for BTM solar modeling
and forecasting. These data sets usually contain BTM solar metadata,
solar time series, or both. BTM solar meta data are in the form of BTM
PV system specifications or remote sensing images that could be used
to derive BTM PV capacity [83]. For example, an aerial image data set
that contains 19,000 distributed PV systems with per-pixel labels [84].
The data set covers four cities in California, namely, Fresno, Stockton,
Modesto, and Oxnard. This data set can be used to develop new non-
intrusive PV detection methods for BTM PV modeling. A similar data set
is provided by the DeepSolar platform [85]. The DeepSolar covers the
contiguous U.S. Even though the data set has site-level data, it publishes
solar deployments at the county-level to protect information privacy.

Solar time series data sets contain meteorological time series or PV
power time series. PV power time series data sets usually rely on data
donations from PV owners, therefore, only consist of a limited number
of sites. For example, the Microgen Database collects generation data
from over 7000 PV systems across the UK, which is conditionally
open-source [61]. Ausgrid data set spans a 3 year period and consists
of half-hour load and rooftop PV generation for 300 de-identified
residential customers [86]. The Solcast hosts a public website where
users are able to report their PV power. The Solcast publishes a data
set with 1287 sites. To the best of our knowledge, there is no such data
set that consists of a large number of BTM PV power time series in
the US. Three popular data sets have meteorological time series either
with high temporal resolution or with large spatial coverage, which are
the NREL National Solar Radiation Database (NSRDB) [64], the NREL
Solar Radiation Research Laboratory (SRRL) data set [65], and the data
set from University of California, San Diego (UCSD) [63]. Table 2 lists
some characteristics of these open-source time series data sets. Addi-
tionally, there are open-source tools, such as the OpenSolar [87], to
ease the burden of solar data access and processing. Other commercial
services are also available to provide BTM solar data, such as the BTM
solar output from Genscape.

2.5. Point versus probabilistic forecasting

Conventional solar power forecasting produces a single value (se-
ries), or the conditional expectation of solar power output at a time

Renewable and Sustainable Energy Reviews 160 (2022) 112224

point in the future, and commonly denoted as a “deterministic” or
“point forecast”. However, prediction involves uncertainty and prob-
abilistic forecasting can directly address that which is related to time
and space. PV variability is higher for a small-scale PV system as
compared to a utility-scale one [88,89]. For residential PV generation,
it is potentially more useful to take a probabilistic forecasting approach
and quantify output according to prediction interval or a probability
density function (PDF); i.e., the human-driven loads are also uncertain
and convolving it with BTM PV determines the net load for tracking or
control. Fig. 1(b) shows a comparison between point and probabilistic
approaches with prediction interval levels, for estimating power or
irradiance. As can clearly be seen from the figure, the probabilistic
methods have better performance in capturing the full range of the
observed data, and thus have advantages in particular applications
where large errors can have strong consequences.

Probabilistic BTM solar generation forecasting has been considered
in [90] to predict PV power generation for building energy man-
agement systems. The method first uses a clear sky model (CSM) to
generate a point forecast, then calibrates the model to real-time PV
measurements to estimate system losses and partial shading. Following
this step, a residual function between the PV measurements and the
calibrated CSM is determined for eight categories of cloudiness, training
an ensemble of regression trees. Based on the distribution functions,
next the 24 h forecast is generated with 1 h resolution. In the final
step, an error analysis of point forecast is used to generate the prob-
abilistic forecast values by cumulative distribution functions. Authors
have proposed an alternative up-scaling approach in [42], to prevent
the large errors obtained by using NWP variables as the input; the
supposition being that when the set of reference plants is small, the
real characteristics or weather conditions of unknown plants cannot be
reflected. Therefore the proposed method use statistical information of
PV plant parameters. To estimate the occurrence of these parameters, a
set of reference PV systems with 35,000 PV plants is used, after which
the plants are binned based on the location and the peak capacity. The
final power values are weighted based on the frequency of occurrence
of the considered configurations. Although the study does not provide
probabilistic forecasts, it uses probabilistic information by estimating
the most probable value by averaging the power values weighted by
their frequency of occurrence. The uncertainty caused by missing infor-
mation on the installed PV systems has also been considered in [43],
in which the proposed model using a linear approach to obtain the
unknown parameters by regression techniques. The deviations from
initial state are restricted by imposing constraints. A Bayesian approach
is used to estimate the parameters of the system. A comprehensive
review of the current body of work on probabilistic forecasting of solar
generation and load consumption can be found in [27].

2.6. Evaluation metrics

BTM solar forecasting involves both classification and regression
problems, therefore, evaluation metrics for both problems are critical.
Specifically, BTM PV detection is a classification task with discrete
output, while BTM PV disaggregation and forecasting are a regression
task with continuous output. This section will describe the two suites
of metrics used in the assessment of model performance.

2.6.1. PV detection model performance evaluation

PV detection is typically a supervised learning problem; i.e., the
model will be trained with, and tested by, a data set composed of
training and validation subsets. Using aerial image-based methods as
an example, the PV detection task is a binary classification task that
classifies the PV or non-PV pixels. Evaluating the accuracy of these
binary classification models starts by collating the results into a 2 x 2
confusion matrix, as shown in Fig. 3 [91]. The four groups of label-
detection pairs are true positive (TP) indicating correct PV prediction,
false positive (FP) indicating wrong PV prediction, true negative (TN)
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Table 2

Open-source time series data sets for BTM modeling and forecasting.
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Name/Reference

Parameters

Spatial coverage

Resolution/length

Microgen [61]
Solcast [62]

PV power, meta data

7000+ locations
1287 locations

30 min/1 year
10 min/7 months

PV power, meta data
Meteorological variables,
NWP

Meteorological variables
Meteorological variables

UCSD [63]

NSRDB [64]
NREL/SRRL [65]

1 location 1 min/3 years
Us 30 min/25+ years
1 location 1 min/40 years

operating characteristic (ROC) curve and the area under the ROC curve
(AUC) are performance measurements for the PV detection at various
threshold settings [93]. The ROC curve is a probability curve that
is plotted with the recall against the false positive rate, where false
positive rate is the abscissa and recall the ordinate. AUC measures the
degree of separability, indicating the models’ capability in distinguish-
ing between PV and non-PV classes. A larger deviation between the
ROC curve and the diagonal line, and a larger AUC value (maximum

Table 3
PV detection evaluation metrics.
Metric Formula Summary
TP+TN :
Accuracy TPITNIFNTTP The overall correctness of the PV detection
Recall T PT:;__N The proportion of actual PV pixels correctly detected
Specificity I_;ﬁﬂ) The proportion of actual non-PV pixels correctly detected
Precision T:=T+pr The success probability of detecting a correct PV pixel
2PrecisionXRecall : Py
F1 score S A weighted average of the precision and recall
Ground Truth
PV Non-PV
7]
£ > True False
§ Positive (TP) | Positive (FP)
o
S
5 AUC = 1) represents a better PV detection.
o >
T O
o O False True
o ¢ - : 2.6.2. For i
§ Negative (FN) | Negative (TN) 6 orecast model performance evaluation

Fig. 3. A confusion matrix for PV detection.

indicating correct non-PV prediction, and false negative (FN) indicating
wrong PV prediction. Based on the confusion matrix, a collection of
metrics can be calculated and are usually used to quantify the PV
detection model performance. Table 3 lists the definitions and summary
of the confusion matrix-derived metrics [91]. The most straightforward
metric is accuracy, which quantifies the overall correctness of the PV
and non-PV pixel classification. However, PV pixels are sparse and rare
in the aerial imagery in practice. That is to say, PV detection is a highly
label-imbalanced classification problem. Imaging an area with much
more non-PV pixels than PV pixels, as shown in Fig. 4, simply assigning
all pixels to the non-PV class can achieve a 99.99% accuracy. This
biased evaluation is common in most areas. Thus, there is a need to
validate PV detection results from varying perspectives [92].

In addition to the crucial metrics of accuracy, there are other four
widely-used confusion matrix-derived metrics. They are the recall, also
known as the true positive rate or the sensitivity, the specificity, also
known as the true negative rate, the precision, also known as the
positive prediction value, and the FI score, also known as the Dice
coefficient. The value of these metrics ranges from 0 to 1, with 0 indi-
cating the worst detection and 1 indicating the best detection. Among
these five metrics, F1 is the only metric that measures the correctness
from multiple perspectives. Other advanced classification metrics that
are not widely-applied, but are valuable to comparable applications,
include the Matthews correlation coefficient and the Jaccard index.

Most PV detection models determine the class through a detection
probability and a threshold. For example, frequently the last layer in
a neural network PV detection models use a sigmoid function or a
softmax function. This output layer is a probability, between 0 and 1,
and different thresholds lead to varying detection results. The receiver

Once a method has been used to generate a solar power forecast,
the quality of the method can be assessed using a validation data set of
historical forecasts and observations. A framework for verifying point
and probabilistic solar forecasts is then often employed. Generally,
goodness of forecasts can be assessed by consistency, quality, and value,
which were first proposed in the weather forecasting domain [94], then
were introduced into the solar forecasting domain [95,96]. Consistency
refers to the correspondence between forecasts and forecasters’ judge-
ment; quality refers to the correspondence between forecasts and the
observations, which can be quantified by error metrics; and value refers
to the benefit gained from the forecasts [94]. In power systems, value
is mostly revealed by the economic or reliability benefits gained from
the forecasts.

For point forecasts, the literature most commonly focuses on vali-
dating forecast quality and through error metrics, including mean bias
error (MBE), mean absolute error (MAE), and root mean square error
(RMSE) [97,98]. Definitions and formulations of point error metrics
are extensively reviewed in [98]. One option — mean percentage ab-
solute error (MAPE) - is controversial for solar applications. Engineers
commonly rely on the MAPE to track dynamic percentage errors by
considering the errors at every forecasting step separately, but percent-
age errors numerically explodes during periods with weak irradiance
or power values, such as early mornings and late afternoons, so MAPE
not recommended for solar applications [95]. To limit the impact of
these outlier errors, it is common practice to use a standardized quality
control filter, for example by removing all data point recorded with
zenith angles above a threshold such as 85°. For a standard metric such
as MAE or RMSE, a forecasting skill scores can show the improvement
of a model over a baseline reference method [99]:

Proposed method score — Reference method score
Ideal score — Reference method score

@

Skill score =

Of the three ideal characteristics a forecast, value is challenging
and rarely assessed for any weather-dependent resource, including BTM
PV. A value assessment likely requires down-stream power system
simulations. For example, the 95th percentile of forecast errors was
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Fig. 4. A 2 km? urban area and its annotated PV systems. The yellow polygons are distributed PV panels. The non-PV/PV pixel ratio of this area is 10,000. This ratio will be

much higher in rural areas.

used in Ref. [98] to quantify the operating reserves and characterize
the solar forecast accuracy. Forecasters may consider over-forecasts
and under-forecasts equally, but in practice solar over-forecasts and
under-forecasts may have greatly different impacts. When considering
utility-scale PV, a severe over-forecast can result in system reliabil-
ity concerns, while an under-forecast can be simply resolved with
increased curtailment. In a BTM context where PV systems are not
curtailable, both over- and under-forecasts could cause reliability im-
pacts if an under-forecast results in net load below the minimum
output of must-run generators. Although it is hard to develop forecast
value metrics that maximizes benefits of every power energy system
individual, there is an emerging need and promising opportunity to
establish methodologies for value-oriented metrics to guide solar fore-
casting. One example can be found in [100], in which the authors
proposed a novel operational metric that assesses the lowest cost of
operationally delivering perfect forecasts. This cost reflects the amount
of solar production curtailment and backup storage required to rectify
all over/under-prediction scenarios.

When considering a probabilistic forecast, verification commonly
employs graphical diagnostic tools — natural for spread, comparative
information formats — conveyed in quantiles or distributions. The three
key concepts in probabilistic forecast verification are reliability, sharp-
ness, and resolution [101]. The reliability, sometimes termed calibra-
tion, refers to the accuracy of forecast probability in correspondence
to the true probability of a forecast occurring. The sharpness refers
to the concentration or narrowness of the predictive distributions.
The resolution indicates how well the probabilistic forecasts distinguish
among different situations; resolution is most nebulous of the three and
is typically assessed in concert with the other two. Most probabilistic
verification tools are developed to quantify or visualize at least one of
the three characteristics of probabilistic PV forecasts, and a framework
of probabilistic solar verification tools examined [96] and reference
methods employed [102].

Reliability of the probabilistic PV forecasts is the first priority to
power system operators due to the importance of contingency pre-
paredness for potential, critical tail events. To visualize probabilistic
PV forecast reliability, a probability integral transform (PIT) histogram
or a reliability diagram or quantile-quantile (Q-Q) plot are most widely
used. A PIT histogram bins the frequency with which different bins
of the cumulative distribution function (CDF) are actually observed,
where a properly calibrated forecast has a uniform PIT histogram [96].
As illustrated in Fig. 5(a), a PIT histogram be used to visually diagnose
reliability deficiencies, such as a U-shape indicating under-dispersion
(forecast intervals too clustered) or a N-shape indicating over-dispersion
(forecast intervals too broad). A reliability diagram is very similar,

except it plots the observed frequency for each quantile instead of using
bins; i.e., the distributions for perfectly reliable forecasts are plotted
along the 45-degree diagonal.

Sharpness is also important to power systems, especially for their
economic operations — it is more useful for making cost-effective
decisions, but only if the forecast is reliable [101]. Sharpness is quan-
tified by the mean size of the central prediction intervals for different
nominal coverage rates [96]:

3p=%gFﬁ(l-’z’)-FJ‘(§)’ @

where p indicates the central interval of interest (i.e., p = 0.9 for
90% prediction interval), N is the number of points in the validation
set, and F;l is the inverse CDF at time n. This is a function of the
forecasts only, not the observations, and so has no ability to assess the
forecast’s calibration. Smaller values always indicate better sharpness.
Fig. 5(b) [103] shows an example sharpness diagram (i.e., 5-diagram),
which visualizes the average sharpness across multiple choices for p.

In practice, all three characteristics can be numerically assessed in
a single proper metric, the continuous rank probability score (CRPS).
For a single time point, the CRPS is formulated as:

+o0
CRPS = / [F(x) - F(x)]dx, 3
—00

where F is the forecast CDF and F is the CDF of the observation — a
step function that jumps from O to 1 at the point of observation [99,96].
Fig. 6 visualizes CRPS, which integrates the squared difference between
these two functions to captures both reliability and sharpness. Typi-
cally, CRPS is assessed on average over all time points in the validation
set N. To look at certain areas of interest, average CRPS can be de-
composed into the Brier score at individual power levels (less relevant
for solar forecasting due to the diurnal trend in expected power) or
the quantile score or pinball loss at individual quantiles [104,102,105].
The literature also contains relics of other metrics that have ambiguous
interpretation and use has been subsequently discouraged [106,96];
e.g., prediction interval coverage probability (PICP), prediction interval
normalized averaged width (PINAW), coverage width-based criterion
(CWOQ).

3. Capacity and specification estimation for BTM PV

The integration of massive quantities of solar PV systems on dis-
tribution networks can result in technical challenges in both planning
and operations. For instance, most interconnection standards do not
require remote monitoring and control of inverters, which can lead
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Fig. 5. Examples of the 5(a) PIT histogram and 5(b) sharpness diagram. The PIT histogram can illustrate regular bias and under- or over-dispersion when the shape deviates from
the ideal uniform distribution. A sharpness diagram here demonstrates that one of four example forecasting methods (persistence ensemble, PeEn) is on average much less sharp

than the other three. 5(b) is reprinted, with permission, from [102].
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Fig. 6. For a single time point, the CRPS is derived from the mismatch between the
forecast CDF (black) and the observation CDF (green), which is simply a step function
at the observation — here, 6.8 MW. The squared difference between the two functions
([F,(x) — F,(x)I*) defines the area (gray) that constitutes the CRPS.

to additional operational challenges [107]. Additionally, the effect of
the each PV system on the distribution system is highly dependent on
its installation configuration, condition, and location. Therefore, it is
clearly important for the operator to know the capacity of installed
BTM solar PV [108]. However, by definition, BTM solar PV panels
cannot be monitored by the utilities, and often even their basic capacity
information is unknown. In some cases although this information may
be publicly available, it may not be reliable (or available to the correct
utility employees) as some clients do not follow the utilities’ regulations
for registrations or, once registered, expand the installed capacity
without notice.

BTM PV can have significant impacts on load profiles at the build-
ing, distribution, and transmission system levels. The distribution sys-
tem operator may only notice slight, continual changes in the electricity
demand profiles, or electricity revenue streams, but cannot immedi-
ately determine the capacity of BTM solar PV systems integrated in
the network due to the existing uncertainties in load patterns. In terms
of demand response capacity estimation, demand response aggregators
must determine how much demand response capacity they have in
order to develop a realistic bidding strategy in the power market. The
BTM PV deployments have a considerable impact on load profiles and,
as a result, on the demand capacity available. Significant errors will
appear in demand response capacity estimation if the actual BTM PV
capacity information is unknown. Similarly, lack of knowledge about
the installed capacity of BTM PV will also result in biased load predic-
tion results and higher errors in net load forecasting [32]. Therefore

an important phase in BTM PV generation forecasting is to include
a capacity and specification estimation procedure for determining the
condition of the network at any particular time. Some researchers focus
on predicting the aggregate output power or capacity of all BTM solar
PV panels in a specific region [109,110,9,111]. Fewer works consider
estimating the output power or capacity of individual BTM solar PV
panels [112,13,113,32,108]. Despite the higher accuracy of the latter
approach, it is difficult to detect the capacity of every PV installa-
tion without detailed meter or interconnection data. The capacity and
specification estimation models are generally used for distribution and
transmission scale aggregate estimates. In some cases, primarily at
the transmission scale, publicly available metadata sets containing PV
system power measurements and time steps can be found for research
purposes [62]. In the case of a lack of any data, the models that can
be used for estimation of capacity and specification can be classified
as satellite aerial image-based methods and time series disaggregation
methods. These two groups are reviewed below. Summaries of the pub-
lications reviewed in detail pertaining to satellite aerial image-based
capacity and specification estimation, disaggregation-based methods
are available in Tables 4 and 5, respectively.

3.1. Satellite aerial image-based methods

One non-intrusive approach to derive the distributed PV capacity is
detecting PV arrays from satellite aerial images, an example of which
is illustrated in Fig. 7. In the computer vision field, it is a image
classification problem. Satellite images with PV labels are first used
to train machine or deep learning models, which are used to detect
rooftop PV systems in images without annotations. PV capacity can be
derived from the size and orientation of the PV arrays detected within
the images. The recent development of machine or deep learning and
remote sensing techniques makes it possible to accurately detect PV
panels over the large geographic areas necessary for transmission-level
estimations. Like most machine learning applications, shallow learning
algorithms were first used in conjunction with feature engineering in
the satellite image processing. For example, building a support vector
machine (SVM) model to learn from the color, shape, and texture of
100 aerial images to detect PV objects [114]; the SVM classifier was
able to identify the PV object with a 94% accuracy. However, the case
study was conducted on a small data set and the false positive rate
was high. The same authors optimized the features used in shallow
learning models, including raw pixels, local color statistics, and textons
(fundamental micro-structures in natural images) to detect the PV
pixels [115]. Random forests (RF), a more advanced classifier, detected
PV arrays with a better ROC curve. However, other accuracy metrics
were not reported. Two other features, the pixel means and variances
of different sizes of windows, were used as input to RF models for PV
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Fig. 7. A satellite aerial image-based PV detection procedure. PV panels are detected by well-trained machine/deep learning models in a small image patch that is extracted from
a large image patch around the National Renewable Energy Laboratory campus. PV capacity can be derived from the detected images based on the pixel area and the roof tilt

angle.

Table 4

Satellite image-based PV detection articles.
Reference Method Input Output Evaluation
[114] SVM Aerial image PV object Accuracy=0.94
[115] RF Aerial image features PV pixel ROC curve
[112] RF Aerial image features PV pixel Accuracy=0.90
[118] CNN Aerial image PV object Accuracy=0.90
[116] CNN Aerial image PV object Accuracy=0.87
[117] CNN Aerial image PV object Precision=0.93
[119] CNN Aerial image PV object Precision=0.95
[120] CNN Aerial image PV pixel Precision=0.94
[121] CNN Aerial image PV pixel ROC curve
[85] CNN Aerial image PV pixel Precision=0.93
[122] CNN Aerial image PV object Precision=0.91

SVR: support vector machine; RF: random forest; CNN: convolutional neural network.
The difference between image features and images is that the former one needs
additional feature engineering, but the latter one can be directly input into the detection
models. The difference between PV object and PV pixel in the output is that the former
one can only provide the existence of the PV panels in a image, but the latter one can
provide the location and the shape.

pixel detection with a 90% detection accuracy. It is not clear if the
model could be applied to a larger spatial-scale with the same accuracy.

Satellite aerial image-based PV detection accuracy has been signif-
icantly improved by deep learning techniques. Deep learning models
learn patterns and features from images automatically without heavy
feature engineering. Convolutional neural networks (CNNs) have been
used [116] to detect PV panels in 670 Google Maps images with
87% accuracy. However, the case study was based on an unrealistic
assumption that PV arrays had a 50% chance to appear in the images. In
practice, PV detection is an extremely unbalanced classification, where
PV objects and pixels are sparse and rare. This is the biggest challenge
in satellite image-based PV detection [117]. On the other hand, some
have tried to reflect the label imbalance nature of PV detection but
resulted in low detection accuracy: CNN model to detect PV panel
objects over a 135 km? area with 80% true positive rate and 72%
precision [118]. In another example, the recall was sacrificed to provide
PV detection with high precision [119].

Efforts have sought to improve the adaptability of the detection
models. For example, transfer learning has been used to leverage the
weights trained with the other image data set for fine-tuning [119].
However, the pre-trained network did not improve the PV detection ac-
curacy. The PV detection accuracy also varied significantly between dif-
ferent geographic regions. For example, a CNN-based network yielded
PV detection with an average 76% precision, 77% recall, and 76% F1

score in three cities in California [123]. However, the same architec-
ture’s detection in two municipalities in Connecticut had an average
88% precision, 83% recall, and 85% F1 score. Compared to utility-
scale PV detection (i.e., 93.76% precision, 92.18% recall, and 92.55%
F1 score), the accuracy of the distributed PV detection was noticeably
lower [120]. One recent work developed a deep learning framework,
called the SolarForecast, to automatically localize solar PV panels in the
U.S [85]. The CNN model was trained with 366,467 images sampled
from over 50 cities/towns across the U.S., which achieved 93.1%
precision in residential areas and 93.7% precision in non-residential
areas.

Only a limited number of studies have taken the next step to derive
distributed PV installed capacities after detecting PV arrays from satel-
lite images [85]. To simulate distributed PV power time series, more
parameters, including azimuth, shading, and irradiance time series
should be provided. While there are some open-source meteorological
data sets available, other parameters are always unknown, which makes
distributed PV forecasting more challenging. With the prevalence of
open-source research and data, more efforts and attention will likely
be focused on this field.

Another related but distinctively different topic is solar technical
potential estimation [124]. Most research in this topic relies on light de-
tection and ranging (LIDAR), geographic information system data that
contains building footprints or land-use data to derive capacity poten-
tials. Since there is no PV information involved, the derived PV capacity
potentials cannot represent the actual capacity of installed BTM PV
systems, but rather an upper bound on that capacity. Therefore, this
research topic is beyond the scope of our research.

3.2. Disaggregation methods

A family of methods to obtain the capacity and specification data
for BTM PV is disaggregation of the net load readings from advanced
measuring infrastructure (AMI) meters. A summary of studies using
disaggregation for capacity and specification estimation is provided in
Table 5.

AMI meters are starting to be widely used and it is anticipated that
the number of such meters increase exponentially [128]. The readings
obtained from an AMI meter can be used to estimate the generation
output of the BTM PV solar system and data related to its capacity
and specifications. Some studies require additional data together with
net load readings, for instance weather related data; e.g., GHI, air
temperature and weather condition classification [125,113,32,108].
In [125], a model based on historical and meteorological data is
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Table 5
Publications considering disaggregation approaches.
Reference, Disaggregation method Forecast Input data Location Performance
Year horizon measures
PV plant
coordinates
Module til imuth 1 imulati
PV plant model Short-term odule ti t and aZ,ImUt, z'ing e Switzerland Simulation
Global horizontal irradiation error
[125], 2015 .
Air temperature
Data from two PV plants
5 and 15 min intervals
Change-p'oint detec'tion algorithrfl Electricity consumption A city in Correlation
[13], 2016 Permutation test with Spearman’s rank Short-term 40 customers .
.. L U.S.A. strength analysis
coefficient 15 min interval
Building’s location (latitud d
Clear sky generation model 10111_: 1::5:) ocation (latitude an
[113], 2017 Universal weather-solar effect using Short-term g . . N/A MAPE
B . Minimal amount of historical net meter
machine learning
data
100 solar power buildings
1 h interval
Actual load dat:
Maximal information coefficient based ctual foad data ISO-NE zone
correlation analysis PV output Maine, New
[9], 2017 R ¥ . Weekly Ambient air temperature > MAPE, RMSE
Correlation analysis based on copula R England,
Estimated PV panel temperature
theory . US.A
1 h interval
Electricit ti
Support vector classification based ectricity consumption
detection model PV output power data Austin/Texas
[32], 2018 . . Short-term Net load data ? MAPE, R?
Support vector regression based capacity U.S.A.
. . 183 customers
estimation .
1 h interval
. . Electricity consumption
Machine 1 d
[108], 2019 aciine ‘earning 1 week 300 customers Sydney, MAPE
PV load decoupling . Australia
1 h interval
Pecan Street data set
Net load
Physical PV system performance model Customer load . Austin/Texas, MSE, MASE,
[126], 2019 . . 1 month Solar PV generation data
Hidden Markov model regression 8 X U.S.A. cv
The solar irradiance and weather data
197 customers
15 minute interval
Deep neural Pecan Street data set Pecan Street
[1271, 2020 P 1 year 1300 customers MAPE, MAE

network

1, 5, 15, 30, 60 min intervals data set

MAPE: Mean absolute percentage error; MSE: Mean squared error; MASE: Mean Absolute Scaled Error; MAE:Mean Absolute Error; CV: Coefficient of variation

proposed to estimate PV system parameters such as: module azimuth
and tilt angle, power curve, etc. The method first simulates the PV
system power output and then tries to minimize the differences in
the parameters between the observed and the simulated PV output.
Performance of the model is tested by using measurements from two PV
plants. The average tilt and azimuth estimation errors were found to be
0.75 degrees and 4 degrees, respectively. A black box method, called
SunDance is proposed in [113] for disaggregating solar generation from
net load data. In addition to the historical meter data, the model uses
the location of a building and a CSM to estimate the irradiance. The
proposed model has two key modules, a clear sky solar generation
module which use historical net energy meter data and a module to
map multiple weather metrics to the expected percentage reduction
in clear sky solar irradiance potential. SunDance is evaluated by using
metered net load data for 100 buildings and the results show that its
accuracy is acceptable without access to any solar training data from a
deployment. According to the findings, the errors for the estimated tilt
and azimuth for one of the buildings in the study is found to be 1 degree
and 1-5 degrees, respectively. One-class support vector classification
(SVC) based model is proposed in [32] to detect BTM solar sites.
The proposed model then estimates the capacity of the detected solar
panels by using a bootstrap-support vector regression (SVR) model. The
algorithm is tested on a realistic data set from 183 residential customers
and according to the results, the value of MAPE is found to be between
5%-7% and the value of R?, between 0.86-0.92. Machine learning
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has been used to disaggregate the output power of each individual
BTM solar PV system from net load data [108]. The algorithm starts
with the capacity estimation using a multiple support vector regression-
based ensemble model. In the second stage, the calculated capacity is
multiplied by the output of a standard distributed solar system to obtain
the forecasts of each individual system.

In contrast to the aforementioned methods, some studies have con-
sidered only AMI meter data as an input without additional data
requirements. In [126], the authors proposed an integrated approach to
disaggregate net load data and to estimate the solar PV system technical
parameters. The proposed method combines a physical PV system
model and a statistical load estimation model based on Hidden Markov
regression. Results show that the proposed approach outperforms the
disaggregation algorithm proposed in [113] and reduces the mean
square error by 44%. In [127], only AMI data is used within a deep
neural network approach for estimating PV size, tilt, and azimuth angle.
The authors reported a mean absolute percentage error of 10.1% and
2.8% for the estimates of PV tilt and azimuth, respectively.

Time series approaches have been also used for disaggregation of
net load. In [13] a three-step data-driven approach is proposed to
first detect and then estimate BTM solar installations. Unauthorized
PV installations are identified by focusing on abrupt changes in time
series data using change-point detection. This step is followed by a
statistical test to verify their existence. The last step combines the AMI
meter data with local cloud coverage data in order to estimate BTM
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Fig. 8. BTM PV power estimation models.

PV parameters. The proposed method is evaluated by using actual AMI
data under different scenarios. Based on the results, when local cloud
coverage information is included, the error in the PV size estimation is
found to be approximately 4% for one 5 kW PV installation. However
when no cloud data is included, the error for the same 5 kW PV system
is found to be 44%. Further studies have proposed methods based on
the disaggregation of net load for forecasting BTM solar PV system
generation, for systems with known capacity and specifications [111,
129,6,130-133].

4. Forecasting methods for BTM solar generation

The methods commonly used in BTM solar PV forecasting are
discussed in this section, including: physical, data-driven and hybrid
models (Fig. 8). Both data-driven and physical models can be used
for irradiance and BTM solar generation forecasting. When it comes
to data-driven models, the approaches used for irradiance and power
generation are similar as there is a strong positive correlation. However
for physical forecasting, a PV system model is still required to convert
the irradiance forecasts obtained from NWP. Extensive review articles
regarding physical and data-driven models for solar irradiance fore-
casting and utility-scale PV power forecasting have been published in
recent years [21,20,134]. Additionally the performance of 12 different
forecasting models that forecast the day-ahead power production, such
as regression, support vector regression, ensemble learning, deep learn-
ing and physical based techniques are compared in [135], as well as the
effect of aggregating PV systems on the forecast model performance. As
the main focus of this review is not on those methods this section aims
to summarize the main features and key publications.

4.1. Physical models for BTM solar PV power forecasting

Physical models can be defined as theoretical simulation models
which describe the physical relationships of a PV system. A physical
model can combine the introduced meteorological data together with
a PV system model in order to estimate PV power output. These models
are mainly based on the main design parameters of the PV system
where historical data is not required. If the system data is available,
they can be used for converting irradiance forecasts to power output
forecasts effectively [136]. However, the accuracy of the output de-
grades with sharp changes in meteorological variables [137]. Physical

11

models can be very simple or highly complex, based on what input data
is introduced to the model. These models are highly dependent on the
input weather model performance, particularly if the weather is cloudy.
In such a case, insufficient spatial and temporal resolution can result in
high errors [20]. On contrary, the physical model itself is often the main
source of error when combined with clear sky models [136]. In order to
overcome this drawback, researchers have proposed various methods.
In [50], an approach focusing on improving PV power estimation
during periods of snow cover is proposed for 11 sites in Germany. The
authors further proposed a method for regional PV point forecasts of up
to 2 days-ahead using physical models and upscaling techniques [41].
Another approach is proposed in [52] to analyze forecasted variability
in PV power generation due to clouds. The input data is obtained
from measurements of 80 residential rooftop PV systems. A framework
to model station-pair correlations of irradiance variability is proposed
and optimal locations of irradiance sensors are recommended. Other
studies using physical performance models for BTM PV generation
are: [138,52,139,140]. As the focus of this article is not on physical
performance models, we refer the reader to [136] for a more detailed
review.

4.2. Data-driven models for BTM PV power forecasting

Data-driven methods are based on historical PV power output data
and can be broadly categorized to include statistical and machine
learning methods. A comprehensive review of data-driven models for
solar forecasting can be found in [22].

4.2.1. Statistical models

Statistical models have been widely used for forecasting PV power
output. Some of the well known statistical models can be defined
as autoregressive moving average (ARMA), autoregressive moving av-
erage with exogeneous inputs (ARMAX), regression and exponential
smoothing. ARMA works with stationary time series and can be used
in non-linear systems to a certain degree. ARMAX is an improved
form of ARMA that incorporates meteorological variables as exogenous
inputs [46]. In recent papers, regression trees also have been widely
employed for boosting and bagging purposes [141].

In statistical models, system design parameters are not required and
historical irradiance and production data-sets can be enough to gener-
ate forecasts. These models are most commonly used for forecasting
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residential solar generation. A series of related studies considered rep-
resentative sites and estimate the regional generation based on selected
sites in California [109,110,14]. Instead of being purely data-driven, a
method combining historical data with weather forecast data can be
found in [142]. A data-driven inference model, built on a Bayesian
network, is developed for a very short-term PV generation forecast (less
than 30 min) with minute-level resolution.

4.2.2. Machine learning models

Recently many researchers have proposed different methods to fore-
cast time series values based on machine learning methods. Machine
learning techniques investigates and develops algorithms for learning
from data, making estimations, and improving forecasts. Integrating
machine learning approaches in grid analysis tools can be helpful to
address data and operational problems that arise as with the increased
penetration of BTM PV systems. The reviewed literature shows that
ANN have been successfully applied for forecasting BTM PV energy
supply due to its robustness and strong inference capabilities. These
methods learn to recognize patterns in data using training data sets.
Generally speaking, these models require historical data about weather
forecasts, real power production, and environmental quantities, which
could be seen as the main drawback. High dependence on prior knowl-
edge, requirement of large amounts of data during training together
with multi-layered structure may result in increased complexity.

Support vector machine (SVM) is a modern and reliable approach
for non-linear BTM solar forecasting. Different from ANN, SVM has no
local minima problem and it does not rely heavily on prior knowledge.
However, parameters have a big impact on SVM, and accurate param-
eter selection is required [143]. In ELM, linear regression can be used
to choose input weights and hidden node biases at random. A review
on machine learning techniques can be found in [144].

Despite the challenges defined related with machine learning ap-
proaches, in [145] two machine-learning methods are proposed to
estimate rooftop solar power from publicly available weather fore-
casts where only the PV system’s geographic location and a small
amount of past output data are required. A machine learning based
approach for day-ahead forecasting of aggregated PV power generation
in Australia is proposed in [146], with 30 min. time interval. Five
machine learning and deep learning algorithms are analyzed together
with two alternative feature sets as inputs to the forecasting algorithms.
In [147], machine-learning approach is used for regional PV output
forecasting with hourly resolution for up to two days ahead. The
physical PV power model is summed for a whole region after being
aggregated by geographical clusters. Parameters such as, irradiance,
temperature, barometric pressure, and wind speed, which are utilized
as inputs to calculate PV output power and irradiance, are forecasted
with NWP model. Following the machine-learning approach, linear
regression method is used to account for bias in computed power. The
available historical power generation data along with NWP inputs are
used within a machine learning approach in [14]. Fuzzy Arithmetic
Wavelet Neural Networks (FAWNN) are used to develop the forecast-
ing engine, providing fuzzy prediction intervals for any desired level.
Another advanced hybrid deep learning-based technique for estimating
daily PV power generation in 30 min. interval is proposed in [148].
In order to learn spatio-temporal patterns in complicated time series
data, the approach integrates Convolutional Neural Networks (CNNs)
and Long Short-Term Memory (LSTM) models in an encoder-decoder
architecture, and only prior solar power data is used as input in the
prediction process.

It should be noted that the accuracy of the statistical forecasts highly
depends on the length and quality of the historical data set, even in the
most advanced deep learning methods. Training data sets longer than
1-3 years tend to increase forecasting accuracy [136].
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4.3. Hybrid models for BTM solar PV power forecasting

In order to avoid the disadvantages of physical and statistical mod-
els, the best option is often to use hybrid models [149]. Any combi-
nation of two or more of the previously described methods leads to
a hybrid model. The idea is to combine different models with unique
features to overcome the negative performance characteristics of a sin-
gle model and to improve the final forecast. In [150], a weather-based
hybrid method including classification, training, and forecasting stages
is proposed for 1 day-ahead hourly forecasting of PV power output. The
forecasting phase is made by using a fuzzy inference method to select
an appropriate trained model. In other research [151], a hybrid method
comprised of a genetic algorithm with a neural network approach
is used in which a genetic algorithm is used to adjust the weights
and thresholds of the neural network. The main role of the genetic
algorithm is to increase the accuracy of the main model.

Machine learning techniques combined with various physical ap-
proaches, such as NWP, clear sky, satellite imaging were proven to gen-
erate improved forecasting outcomes for long-term time horizons [152,
153]. The hybrid models can be computationally complex as the num-
ber of strategies it incorporates grows. A balance between accuracy,
computing complexity, and cost has to be ensured in order to get
better performance in forecasting accuracy [144]. In comparison to
any other individual technique, hybrid models are can be defined as
efficient models when all of these limitations are kept within limits.
More information on hybrid models can be found in [19]. Additionally,
a complete review on the recent applications of artificial intelligence
techniques; focusing particularly on machine learning, deep learning,
and hybrid methods can be found in [154].

5. Application for BTM solar PV generation forecasting: net load
forecasting

An important application area of BTM solar generation at transmis-
sion scale is net load forecasting. Net load forecasting is an important
application area for BTM solar power at the transmission scale. They
are frequently used in unit commitment and economic dispatch models.
This section reviews the available literature on net load foresting and
the summary of the papers is given in Table 6. Net load refers to the
total system load, less the amount of load provided by the intermittent
variable renewable sources. In a case where the intermittent energy
source considered is solar PV, the net load refers to the total system
load, less the demand met by solar PV. As discussed in Section 1,
the penetration of BTM PV generation has a significant impact on net
load. The relevance of addressing BTM PVs in conjunction with load
has gained significant attention in recent years. Therefore, detailed
modeling of BTM solar generation is essential to achieve high net load
forecasting accuracy.

Forecasting net load described in the literature primarily utilizes
two approaches, integrated and additive. In the integrated approach,
historical data for the two sub-components of net load (PV genera-
tion and load data) are formed and combined and the resulting time
series is considered as the forecasting input for the corresponding
model [159,33,158,161]. In the additive approach, PV generation and
load data are individually estimated and the results are used to perform
net load forecasting [155,9,157]. In [159], a very short-term hybrid
forecasting model is proposed by integrating phase space reconstruction
and deep neural network (DNN) methods. The net-load time series are
firstly reconstructed using the phase space reconstruction method. This
method helps to better reflect the dynamic characteristics of the bus
load, then the reconstructed data is fitted by the DNN to obtain the
predicted value of the net load. A similar approach is also used in [33]
for predicting solar-integrated, utility-scale feeder net load in the San
Diego Gas & Electric operating region. The proposed hybrid model,
consisting of ANN and SVR models, forecasts net load over a 10 to
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Table 6
Publications considering net load forecasting.
Reference, Year Forecast method Forecast horizon Input data Location Performance
measures
Clear sky model Heating Ventilation and Air Conditioning
Autoregressive model (HVACQC) load University of MAPE, MBE,
155], 2016 . . Short-t . e
[155] Autoregressive model with exogenous ort-term PV power generation California, U.S.A MAE, RMSE
input Load demand from grid
Support vector regression 1 h interval
Maximal information coefficient based Actual load .
correlation analysis PV power generation ISO-NE zone
[91, 2017 . y . Weekly Ambient air temperature Maine, New MAPE, RMSE
Correlation analysis based on copula .
Estimated PV panel temperature England, U.S.A
theory .
1 h interval
Actual load .
Artificial Neural Network 10, 20, and Solar penetration San D,l ego‘(?:as & MBE, MAPE,
[33], 2017 . . Electric utility
Support Vector Machine 30 min Feeder length rRMSE
L company, U.S.A
10 min interval
. . Residential electricity consumption
D d PINAW, PICP
[156], 2017 ynamic Gauss@n process Seasonal Rooftop PV power generation Sy ney W, PICP,
Quantile regression L Australia CRPS
30 min interval
Gumbel copula based joint probability Actual load Bonneville
[157], 2018 distribution Seasonal Wind and Solar generation Power Admin., MAE, PE, MAPE
Grey index model 5 min interval U.S.A.
Actual load Svdne RMSE, MAE,
[158], 2019 Bayesian deep learning Day-ahead PV power generation 4 yf NRMSD, MAPE,
L Australia . .
30 min interval Pinball, Winkler
Ph tructi Net load
[159], 2019 ase space reconstruction Ultrashort-term et fod N/A RMSE, MAPE
Deep neural network 5-min interval
Net load
Artificial 1 network
[160], 2020 ruticial neural networ Day ahead Irradiation N/A MAE
Multilayer Perception .
1 h interval
Net load
Gradient boosti hi MAE, nRMSE
[161], 2020 radient boosting ma.c ne Day ahead Irradiation Texas, U.S.A o » 1 ?
Support vector machine . MAPE
1 h interval
Meteorological data
Wind and solar generation
[162], 2020 Deep neural network 12, 24, 48 and Actual load German MAE, MAPE,
’ Wavelet transform 168 h Y RMSE

Energy price
1 h interval

MBE: Mean bias error; RMSE: Root mean square error; PINAW: Prediction interval normalized average width; PICP: Prediction interval coverage probability; CRPS: Continuous
ranked probability score; PE: Persistence ensemble; NRMSD: Normalized root mean square deviation; Pinball: Pinball loss function; Winkler: Winkler score

30 min horizon for four solar-integrated, utility-scale feeders in South-
ern California. combining ANN and SVR models, forecasts net load for
four solar-integrated utility-scale feeders in Southern California over a
10 to 30 minute horizon. The proposed hybrid method performance
is improved by removing low-frequency load variation due to human
activities and incorporating sky image features into daytime forecasts
after separating training between daytime and nighttime. In [161], day-
ahead, data-driven feeder-level net load forecasts in northern Texas
are generated by considering weather forecasts and BTM solar PV
generation. The generation of BTM PV is estimated by using the PV
penetration and forecasted solar irradiance within a SVR model. The
estimated BTM PV output of the feeder is then used together with
forecasted weather to train extreme hot/cold load forecasting models
by using a gradient boosting machine (GBM) machine-learning method.
Finally, in [158], a probabilistic model based on Bayesian probability
theory and deep learning is applied to time-series aggregation after
clustering consumers into two groups with “visible” BTM systems
(i.e., specifications are known) and “invisible” ones. The main reason
for clustering is to enhance the performance of the aggregated net
load forecasting, by providing a deep learning model for each cluster.
Several visibility levels are employed to analyze the effectiveness of the
clustering approach. An additive approach is used in [9], for addressing
the question of net load forecasting for high penetration scenarios of
BTM solar PV systems. First, the capacity of BTM PV is estimated
by a maximal information coefficient based correlation analysis and a
grid search. The measured net load profile is then broken down into
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three parts which include solar PV output, the residual (net load minus
estimated actual load, plus estimated PV output), and the actual load.
Afterwards, in order to obtain a probabilistic net load forecast, correla-
tion analysis based on copula theory is conducted on the distributions
and dependencies of the forecasting. Another application of additive
approach can be found in [157], in which the wind and PV outputs
are considered within a net load forecast model. The proposed model
uses a Gumbel copula to model the joint probability distribution of
load, wind and solar generation forecasting errors. First, the correlation
of meteorological parameters, including humidity, wind speed, and
temperature with renewable generation and load is calculated. Then,
both generation and load are predicted to obtain final net load fore-
cast. Similar to [157], authors in [162] also consider solar and wind
generation uncertainties within the net load forecast, but also include
the effects of energy prices on the load forecast. The authors proposed
a deep neural network approach combined with the wavelet transform
to increase model sensitivity to the variations of the input data.

A comparison of additive and integrated model is performed
in [155], focusing on the significance of net load forecasting for
operation and management for microgrids with high PV penetrations.
Solar power is forecasted using SVR based model and an adaptive
clear sky model. Load demand is forecasted by different approaches,
including auto-regressive models with or without exogenous input, as
well as SVR. For the additive forecasting approach, solar power and
load demand are forecasted separately and then combined to obtain
net load. In the integrated approach, solar power is used as an input to
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net load forecasting model. The results showed that integrated model
outperforms the additive model in terms of all error metrics. The effects
of aggregation of customers and increased penetration of PV power on
prediction intervals are analyzed in [156]. Authors proposed a dynamic
Gaussian process and quantile regression to produce probabilistic fore-
casts on data obtained from the area of Sydney, Australia. Additionally,
seasonal effects are examined on the results. Finally, in [160], an ANN-
based model is used to predict short-term high-resolution residential
net load profiles. A case study of a real neighborhood including 75
single-family houses is used to evaluate the performance of the model.

6. Conclusions and future research directions

BTM PV monitoring, forecasting and control has the potential to
significantly impact power system operations. Specifically, high solar
PV penetrations lead to supply and demand imbalance, resulting in
erroneous net load forecasts. Accurate and robust forecasting of BTM
solar generation is essential to mitigate the consequences of these
imbalances in a cost effective manner and to maintain system relia-
bility. Forecasts of BTM PV are needed by multiple stakeholders in
the power system and can be classified — from the customer scale
to aggregate, regional BTM generation — with top-down approaches
focused on bulk system and utility operations, while bottom-up ap-
proaches seek to scale detailed, hierarchical models. However, precise
estimations of installed BTM PV capacity are challenging in many
locales, as the generation data from BTM systems is only partially
recorded or completely missing. Additional estimation techniques such
as capacity and specification estimation are often needed to produce a
reasonable BTM PV forecast; i.e., innovation is required for this critical
step in the BTM forecasting algorithms. Ignoring capacity estimates,
particularly in the case of high BTM PV penetration could have impacts
on the following technical challenges: matching, safety, uncertainty,
and system adequacy. A difference in PV capacity information causes
a prediction error of solar power generation amount by area (reduces
prediction accuracy), making it harder to compute the correct power
system hosting capacity. Lack of capacity information might also result
in a variety of safety issues, such as over-voltage and back-feeding,
which can harm system facilities.

The growth in BTM PV installations is likely to continue as PV panel
prices continue to decrease and distributed storage installations are fol-
lowing similar trajectories. To ensure their continued interconnection
and the maintenance of power system for reliability standards, impacts
on the overall system should not be ignored and explicitly considered
in operational analysis. Moreover, BTM storage technologies, make
it possible to use stored energy another degree-of-freedom. Directly
controlling the customer’s net load profile, especially when a rooftop
PV system is coupled with a battery, requires the capacity of the battery
to be jointly estimated. The literature on the inclusion of distributed
storage technologies in bulk power system operations is nascent, with
BTM battery capacity estimation only considered in [10], in which local
solar irradiance information is used to estimate both the hidden rooftop
solar PV generation and hidden battery capacity in buildings.

The most critical and challenging factor of the general BTM prob-
lem(s) is the prediction accuracy necessary; i.e., for enhanced BTM
solar PV system integration, which has direct and tangent applications
alike dependent on whether the reference signal, for example, is a
PV inverter status or instantaneous neighborhood-level (target) load.
An increase in estimation accuracy can be achieved by combining
strengths of various methods through hybrid approaches; e.g., stacking
and blending machine learning models. Hybrid approaches can then
perform better and result in reduced errors. Because of the stochastic
nature of solar generation and uncertainties in data for BTM solar PV
system, the accuracy level of power estimation is generally poor. The
literature explicitly focused on uncertainty quantification within BTM
systems is immature. Probabilistic approaches could be an effective
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means to provide a better representation of the underlying uncertain-
ties. The combination of probabilistic approaches with hybrid methods
could thus help optimize the stability and safety of grid operations in
both practice and counterfactual hedging.

Another critical factor inherent to the BTM problem, only touched
upon with this review, and could be a potential future research direc-
tion is the implications for next-generation demand response. Whether
load shaping and modulation is beneficial to the smart grid in question,
likely coupled to grid-tied batteries, is constrained by (1) the compu-
tational effort of expanding degrees-of-freedom in the controllability
of loads, and (2) the implied control over humans’ demand (or desire)
for electricity during critical events or volatile periods. Coordinating all
the methods, techniques, and considerations of this article with human-
in-the-loop activity is not trivial. Next generation demand response
programs, perhaps relying on real-time marginal emissions rates, seek
to optimize load-side controls but this entails evermore degrees-of-
freedom for hierarchical controls or other cascading logic. Clearly,
a balance between the top-down (e.g. weather) and bottom-up data
(e.g. residential BTM PV panel specification database) is needed to
maximize value to all stakeholders.

In summary, this article reviewed BTM solar power requirements,
techniques, and implications. The models used for BTM solar power
generation forecast models were classified according to the users,
i.e., customers, distribution and transmission system operators. Each
type of user was then introduced based on their use cases, respectively.
Several application challenges exist in respective modes, as discussed
according to currently adopted practices. This article’s comparative dis-
cussions seek to help professionals decide the appropriate combination
of top-down and bottom-up modeling and data technique to improve
existing tools for users and use case combinations.
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